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Abstract: Recent research and IPCC reports extensively document the varied effects of climate change on basins 

worldwide. This study evaluates the impact of climate change and land use change on the Seti-Gandaki watershed's 

hydrological regime of Nepal. Using a calibrated hydrological SWAT model, forced with climate scenarios (SSP245 and 

SSP585), the study projects increased precipitation (2-129% and 3-139%) and a warming trend in temperature. Streamflow 

at the watershed’s outlet is expected to rise (up to 49% in monsoon, 96% in winter in SSP245; up to 61% in monsoon, 89% 

in winter in SSP585), with increased flow extremes, potentially leading to floods and landslides. The combined impacts 

project a 52-125% increase in streamflow in SSP245 and a 100-136% increase in SSP585, attributed to the shift from rural to 

urban settlements. These findings provide crucial insights for water resource planners and managers to develop location-

specific strategies for sustainable water resource use in the Seti-Gandaki Watershed. 
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1. Introduction 

Climate change is a frequently discussed topic in 

national development discussions, owing to its potential 

impact on future water supplies (Dixit et al., 2009; WECS, 

2011; NCVST, 2009). The impacts of climate change in 

the region of the Himalayas have been reported to include 

changes in both temperature and precipitation, as well as 

wide-ranging consequences such as glacier retreat, 

wetland areas loss or functional change, increased flow 

variation, and changes in flow timing and amounts that 

affect agriculture, rural livelihoods, and the overall 

economy (Babel, 2009; Bates et al., 2008). According to 

the Stocker et al., (2013) a recent report by the 

Intergovernmental Panel on Climate Change (IPCC) 

showed a rise in temperature and a rise in summer 

monsoon precipitation across South Asia with high 

confidence. Climate change is reshaping the water system, 

with the direct effects on water being magnified by the 

effects on other sectors in the water-energy-food-

environment-livelihood nexus. Globally rivers provide 

more than half of the world's extracted freshwater (Taft & 

Kühle, 2018). However, global waterways have 

undergone major modifications, particularly in 

streamflow, which are primarily the result of 

anthropogenic activities such as land-use change, forest 

clearing, damming rivers, water deviations and 

abstractions, sand mining, and, more recently, climate 

change impacts (Pandey et al., 2019a; Sirisena et al., 

2021). The sixth assessment report (AR6) of the IPCC in 

2021 confirmed that human-caused climate change has 

already affected many weather and climatic extremes 

around the world, as well as impacting the hydrological 

cycle and water availability. As a result, consistent, 

predictable seasonal water flows are unlikely to be 

maintained, and year-to-year variability will persist.  

Changes in Land use Land cover (LULC) is typically 

caused by human actions rather than natural occurrences 

(Paul & Rashid, 2017). Human-made activities that 

produce LULC shifts include crop growth, burning 

activities or wood for energy use, forest clearing, grazed 

field expansion, certain building work, and development. 

Because they influence hydrological processes such as 

infiltration, groundwater recharge, base flow, and runoff, 

such changes can have a substantial impact on watershed 
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habitats (Niehoff, 2002). The investigation of changes in 

runoff characteristics produced by human activities is 

crucial to comprehending the effects of LULC change on 

hydrological processes on Earth's surface (Shi et al., 

2007). Understanding the impact of Land use and Land 

cover change (LULC change) as well as its impact on 

ecosystem functioning and its associated services is 

essential particularly in developing countries like Nepal, 

where agricultural land and ecosystem services support 

more than 60% of the total population  (NPC, 2022). 

The Fourth Assessment Report (AR4) of the 

Intergovernmental Panel on Climate Change (IPCC) 

reiterated that a global warming is taking place (Solomon, 

2007). Climate change is commonly accepted and can 

impact the spatial and temporal distribution of water 

resources, as well as the intensity and frequency of 

extreme hydrological events (Bae et al., 2011). As a result, 

research into the effects of climate change on hydrology 

has recently become a hot topic. The most popular method 

for assessing the hydrological implications of climate 

change is to employ a hydrological model with climate 

change scenarios derived from the general circulation 

model (GCM) and forced with emission scenarios 

(Thompson et al., 2013). However, due to the presence of 

uncertainties in evaluations of climate change impacts on 

drainage and the difficulty in characterizing these 

uncertainties, these conclusions are rarely employed by 

decision-makers and managers in managing and planning 

water resources (Bae et al., 2011).  

Changing climatic factors influence the cycle of water 

by influencing surface runoff, evapotranspiration, and 

aquifer recharge (Hiscock, 2011). Surface water plays an 

important role in human life (Ambade et al., 2022; Hasan 

et al., 2021). Floods, on the other hand, involve significant 

economic loss to people of vulnerable to floods locations 

(Kauffeldt et al., 2016). Water availability in an area is 

heavily influenced by how rainfall in the area is divided 

into various components such as surface runoff, interflow, 

groundwater recharge, and so on. The proportions of these 

components in the area are mostly influenced by the area's 

LULC. As a result, a change in an area's LULC can affect 

the proportions of the aforementioned components, 

resulting in a dramatic change in the area's biological 

system. It is widely acknowledged that there has been 

significant shift in LULC during the previous few decades 

in various places of the world. This modification modifies 

the proportions of the aforementioned components, which 

can impact water availability in the affected area (Emami 

& Koch, 2019). Generally, changes within the area of 

water availability and surface runoff can impact the 

LULC. This circular dependency - water availability on 

LULC and vice versa - might have a negative impact on 

the surrounding ecosystem (Sajikumar & Remya, 2015). 

The streamflow plays vital role in the developing 

landlocked countries like Nepal. As, the climatic condition 

is getting worse every single day the streamflow is also 

changing its intensity. So, in the context of Nepal, where 

hydropower is always expanding, knowing about future 

streamflow is critical in determining whether power 

generation and irrigation supply can meet future demand. 

The Seti-Gandaki watershed is a small tributary of the 

Narayani River. Its surface runoff is controlled by a 

variety of factors, including direct climatic drivers such as 

temperature changes, rainfall changes, and snow melting, 

as well as non-climatic drivers such as change in LULC. 

Along with climate change, the change in LULC is a key 

issue. The LULC has also evolved tremendously during 

the past year. The overall objective of the research was to 

evaluate the impacts of climate change and LULC change 

on streamflow in Seti-Gandaki watershed. So, looking at 

the research article over the Hindu-Kush Himalayas, it 

still lacks the combined effect of LULC and future climate 

change projections. As a result, this research will bridge 

the gap in the Seti-Gandaki watershed. 

2. Materials and methods 

This research examined the effects of climate and 

LULC change on watershed hydrology. The tailspin 

concept was employed to complete the analysis of climate, 

LULC change, and its singular and combined 

consequences on streamflow using Figure 1. 

 

Figure 1: Methodological framework 
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2.1. Data quality assessment 

The hydrometeorological data collected from DHM was 

subjected to a stringent quality assurance (QA) process. 

The QA method entailed inspecting each and every data 

point at each station to determine the presence of 

abnormal values. The missing data dates were then 

discovered and collated to determine the total amount of 

data missing in each month of each year at each station. 

The characterization produced the overall percentage of 

data missing at each site from 1989 to 2017. Stations with 

considerable missing data were excluded from the analysis 

(a 10% missing data criterion was used). 

2.2. Future climate projection 

Future climate data were obtained from the World 

Climate Research Programme website, focusing on 

CMIP6-GCM model outputs. Only 13 GCMs with daily 

precipitation and temperature data (minimum & 

maximum) were selected, as listed in Table 4.2 (Mishra, 

2020). The middle-of-the-road strategy, aligned with the 

SSP245 emission scenario, was combined with the fossil-

fueled growth method and the SSP585 emissions scenario 

to encompass a broad range of socio-economic pathways. 

To assess GCM performance, precipitation projections 

were compared with baseline observed data from 1995 to 

2014. Nash-Sutcliffe efficiency (NSE), root mean square 

error (RMSE), and percentage bias (PBIAS) were used as 

performance metrics. The top 5 GCMs were selected for 

the multi-model ensemble based on their performance 

ratings, derived from Table 4.3 (Moriasi et al., 2007; 

Thapa et al., 2021). 

2.3. Assessing climate change impact on 

streamflow 

The Arc SWAT 2012.10.5 interface facilitated the 

creation of the SWAT model for the Seti-Gandaki 

watershed. Utilizing spatially distributed data for 

topography, land cover, and soil, the model was 

established. Meteorological data, including daily 

precipitation, maximum and minimum temperatures, solar 

radiation, wind speed, and relative humidity, were sourced 

from the Department of Hydrology (DHM) for this study. 

Arc SWAT 2012.10.5 served as the model setup 

platform, generating a river network with a threshold area 

of 500 ha. Subbasin and river characteristics were 

extracted using Arc GIS tools, dividing the study region 

into subbasins based on monitoring points and ridges. The 

Hydrologic Response Units (HRUs), representing land 

areas with similar responses to weather inputs, were 

created using four GIS layer maps: sub-basin, land 

use/land cover, soil, and slope. 

The Seti-Gandaki watershed was subdivided into 35 

sub-basins, and LULC and soil files were generated using 

ICIMOD 2010 and SOTTER. A 10% threshold and two 

500m elevation bands were established, resulting in 1980 

HRUs within the watershed. 

2.4. Assessing impact of climate change and 

LULC change on streamflow 

Future LULC was predicted using Land Change 

Modeler (LCM), embedded in TerrSet Geospatial 

Monitoring and Modelling System (TGMMS) software. It 

operates on the philosophy of Multilayer Perceptron 

Markov Chain Neural Network (MLP-MCNN) method. 

Then calibrated and validated SWAT model was forced 

with projected future climate as well as predicted future 

LULC. Simulated streamflow was compared with baseline 

and changes are reported as combined impact of climate 

change and LULC change on streamflow. 

3. Results and discussion 

3.1. Future climate projection 

The five GCMs values were projected, and the 

extracted value of the relevant station was calculated. The 

climatic data projected for the corresponding futures were 

2025-2050 for the near future (NF), 2051-2075 for the mid 

future (MF), and 2076-2100 for the far future (FF). The 

projected future values of different selected GCMs were 

ensembled into single value for every meteorological 

station and the annual average value was taken to plot the 

graph the graph from 2015 to 2100. The precipitation in 

every station is projected to increase. 

 

Precipitation projection 

This watershed has eight precipitation stations. The 

forecast precipitation projections for each station show an 

increasing order during the monsoon season and a 

decreasing during winter. The Figure 5 1 shows the 

alteration in precipitation in respective meteorological 

stations. 

 

Figure 5 1: Future climate projection for precipitation of 

station 804 and 811 

 

The precipitation is projected to increase in high 

amount during monsoon, post-monsoon and pre-monsoon 

but is expected to drier during winter season due to the 

decrease in the amount of the precipitation. But when seen 

in seasonal alteration the precipitation is expected to 

decrease during winter in SSP585 whereas all other are 

expected to increase with compare to the baseline. The 

findings are consistent with those obtained in the nearby 
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Koshi watershed and other minor watersheds of Nepal. 

This study's conclusions are similar to those of other 

studies conducted for Nepal and the Himalayan region 

(Agarwal et al., 2015; Nepal, 2016). The precipitation 

does not follow specific trend in the mean monthly 

projection with compared to the baseline(Adhikari & 

Mathema, 2023). 

 

Table 5 1: Future projection of Precipitation compared to 

the baseline 

 

Month

s 

Base 

line 

ssp245 ssp585 

NF MF FF NF MF FF 

Jan 0.82 -6% -5% 14% 2% -11% -28% 

Feb 1.55 -6% 11% -2% -9% 2% -8% 

March 2.18 -7% 2% -8% -2% 3% 6% 

April 4.46 31% 35% 31% 32% 41% 55% 

May 9.71 23% 33% 48% 34% 35% 63% 

June 20.16 7% 26% 29% 22% 35% 60% 

July 26.13 33% 45% 50% 34% 56% 81% 

Aug 24.42 23% 33% 42% 24% 53% 92% 

Sept 14.91 33% 40% 70% 38% 69% 

124

% 

Oct 3.49 28% 51% 56% 54% 55% 

117

% 

Nov 0.53 
129
% 

129
% 

145
% 

114
% 

131
% 

135
% 

Dec 0.46 68% 45% 46% 46% 90% 50% 

 

Maximum temperature projection 

This watershed has four temperature stations. The 

forecast maximum temperature projections for each 

station show an increasing order during every season. The 

climatic data projected for the corresponding futures were 

2025-2050 for the near future (NF), 2051-2075 for the mid 

future (MF), and 2076-2100 for the far future (FF). The 

Figure 5 6 shows the alteration in maximum temperature 

in respective meteorological stations. 

 

Figure 5 6: Future projection for maximum temperature 

 

After averaging the data across the watershed, the 

baseline data was compared to the GCM scenarios. In the 

several GCMs, the scenarios show the two distinct 

outcomes. The maximum temperature is projected to 

increase throughout the seasons and years in the watershed 

with compare with the baseline. So, the all the season is 

expected to be hotter during the seasonal alteration. The 

finding result is similar to that of the Gandaki watershed 

(Thapa et al., 2021). The result does follow the specific 

trend where the maximum temperature has been projected 

to rise in the upcoming years (Adhikari & Mathema, 

2023).  

The outcomes are compared and shown below Table 5 

3: 

 

Table 5 3: Future projection of maximum temperature 

compared to the baseline 

 

Months 

Base line 
ssp245 ssp585 

NF MF FF NF MF FF 

January 19.12 0.94 1.71 2.01 1.23 2.31 3.96 

February 21.94 1.17 1.91 2.24 1.37 2.84 4.47 

March 26.05 1.47 2.04 2.57 1.51 2.77 4.64 

April 28.66 1.08 2.13 2.47 1.51 2.76 4.59 

May 29.18 1.09 1.74 2.07 1.03 2.21 3.72 

June 29.25 0.80 1.46 1.87 0.91 2.07 3.42 

July 28.93 1.80 2.91 3.78 2.14 4.33 6.88 

August 28.89 2.58 3.81 4.75 2.93 5.34 8.20 

September 28.17 2.33 3.49 4.06 2.48 4.70 7.48 

October 25.85 1.63 2.49 3.10 1.68 3.53 5.61 

November 22.40 1.43 2.22 2.63 1.76 2.93 4.44 

December 19.45 1.02 1.78 2.11 1.30 2.34 3.89 

 

 

Minimum temperature projection 

The forecast minimum temperature projections for each 

station show an increasing order during every season. The 

image below depicts the ensemble data of five chosen 

GCMs with confidence bands of 0.95, 0.8, and 0.5. The 

climatic data projected for the corresponding futures were 

2025-2050 for the near future (NF), 2051-2075 for the mid 

future (MF), and 2076-2100 for the far future (FF). The 

Figure 5 11 shows the alteration in minimum temperature 

in respective meteorological stations. 

 

Figure 5 11: Future projection for minimum temperature 

 

The data was then averaged across the watershed, and 

the baseline data was compared to the GCM scenarios, 

which depict two distinct outcomes in the various GCMs. 

The minimum temperature does follow the specific 

increasing trend and is projected to increase all four 

season and annually throughout the year within the 



 Impacts of Climate Change and Land Use Change on Streamflow: A Case of Seti Gandaki Watershed, Nepal  

Journal of Sustainability and Environmental Management (JOSEM)                                                                                                                  245 

 

watershed (Adhikari & Mathema, 2023). This may result 

in the melting of the snow and outthrusting of the glacier. 

Which ultimately results in the increase in the streamflow 

of the watershed. The increase in the minimum 

temperature of the watershed is not good for the upcoming 

days because it may result in Glacial Lake Outburst Flood 

(GLOF) as the Kapuche glaciers lake and Annapurna 

Himalayas lie in this region (MoHA, 2015). The outcomes 

are compared and shown in Table 5 5: 

 

Table 5 5: Future projection of minimum temperature 

compared to the baseline 

 

Months 

Base line 
ssp245 ssp585 

NF MF FF NF MF FF 

January 6.57 0.50 0.86 1.27 0.69 1.43 2.32 

February 8.92 0.73 1.01 1.49 0.79 1.81 2.88 

March 12.25 1.27 1.68 2.16 1.34 2.33 3.69 

April 15.17 1.35 2.12 2.56 1.77 2.97 4.72 

May 17.74 1.92 2.69 3.24 1.96 3.32 5.44 

June 20.05 1.01 1.74 2.18 1.32 2.29 3.64 

July 20.99 1.23 1.76 2.09 1.40 2.40 3.49 

August 20.72 1.41 1.93 2.35 1.62 2.77 4.03 

September 19.27 1.35 1.92 2.41 1.55 2.76 4.09 

October 15.06 1.42 2.03 2.63 1.51 3.17 5.10 

November 10.88 1.04 1.55 1.85 1.19 2.10 3.03 

December 7.29 0.93 1.36 1.66 1.10 1.85 2.70 

 

3.2. Impacts of climate change on streamflow 

The five GCMs values were forecasted, and the 

extracted value of the relevant station was calculated. And 

the climatic component of the future data was fed into the 

SWAT model, and the results reflect the discharge 

throughout the hydrological station. The following 

discharge data after projecting future meteorological data 

for the relevant future (near future, mid future, and far 

future). The climatic data projected for the corresponding 

futures were 2025-2050 for the near future (NF), 2051-

2075 for the mid future (MF), and 2076-2100 for the far 

future (FF). Three years of the warmup period was taken 

during the simulation of the model. 

SWAT model performance 

The hydrological performance was carried out by the 

SWAT model and its results in the Tanhaun outlet and 

sishaghat outlet with parameter are shown in Table 5 7 

and Table 5 8. Each and every parameter shows the 

satisfactory result and each of them fall within the 

provided range provided by the SWAT-CUP. Final nine 

parameters were taken as the most sensitive parameters 

from the initial 31 parameters. 

 

 

Table 5 7: SWAT parameter selected for Seti Gandaki watershed 

 

S.N. 
Parameters Definitions Units Range Fitted Value P-value 

1 
ALPHA_BF  Baseflow recession constant  days  0.15-0.47 0.362 0.00 

2 
GW_DELAY  Delay time for aquifer recharge  days  0-250 8.75 0.00 

3 
GW_REVAP  Groundwater revap coefficient  -  0.01-0.1 0.09 0.48 

4 GWQMN  
Threshold depth of water in shallow aquifer for 

groundwater return flow to occur  
mm  500-2500 

1383.333 0.81 

5 
RCHRG_DP  Deep aquifer percolation fraction  -  0.02-0.61 0.556 0.99 

6 REVAPMN  
Threshold depth of water in shallow aquifer for revap to 

occur  
mm  300-600 

590.5 0.18 

7 
CANMX  Maximum canopy storage  mm  21.4-64.5 22.477 0.19 

8 
EPCO  Plant uptake compensation factor  -  0.06-0.56 0.548 0.52 

9 
ESCO  Soil evaporation compensation factor  -  0.67-1 0.963 0.95 

10 
LAT_TTIME  Lateral flow travel time  days  0-79.21 37.097 0.05 

11 SOL_AWC  Available water storage capacity of the soil layer  -  -0.1-0 -0.06 0.06 

12 
SOL_K  Saturated soil conductivity  mm/hr  -0.1-0.1 0.098 0.39 

13 
SOL_Z  Depth from soil surface to bottom of layer  mm  -0.1-0.1 0.099 0.50 

14 CN2  SCS runoff curve number for moisture condition II  -  -0.1-0.1 -0.08 0.00 

15 CH_S1 Average slope of tributary channels - -0.1-0.1 -0.001 0.39 
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16 
CH_N1 Manning’s “n” value for the main channel  -  0.01-13.3 7.74 0.01 

17 
TLAPS  Temperature lapse rate  °C/km  -10- -5.45 -6.534 0.86 

18 
PLAPS  Precipitation lapse rate  mm/km  7.74-13.92 9.543 0.13 

19 ALPHA_BNK Baseflow alpha factor for bank storage -  0-0.38 0.355 0.63 

20 CH_L1  Longest tributary channel length in subbasin. - -0.1-0.1 -0.052 0.22 

21 
SURLAG Surface runoff lag time. - 0.05-9.97 7.308 0.05 

22 
SFTMP Snowfall temperature - 9-20 12.832 0.60 

23 
SMFMN Minimum melt rate for snow during the year - 2.5-8.33 7.038 0.46 

24 
SMFMX Maximum melt rate for snow during year - 3.84-11.6 7.966 0.87 

25 
SMTMP Snow melt base temperature - 6.72-20 6.742 0.98 

26 
TIMP Snow pack temperature lag factor - 0-0.44 0.247 0.09 

27 
SLSOIL Slope length for lateral subsurface flow. - 0-51.0998 14.393 0.30 

28 
HRU_SLP Average slope steepness - -0.1-0.1 -0.031 0.14 

29 
SOL_ALB Moist soil albedo - -0.1-0.1 -0.057 0.69 

30 
SLSBSSN Average slope length - -0.1-0.1 0.061 0.45 

31 
OV_N Manning's "n" value for overland flow - -0.1-0.1 0.008 0.77 

 

The Model was further calibrated using the sensetive parameter only and the result is in Table 5 8: 

 

Table 5 8 : SWAT sensitive parameters 

S.N. 
Parameters Definitions Range Fitted Value 

1. 
SURLAG Surface runoff lag time. 0.05-9.97 6.25 

2. 
TIMP Snow pack temperature lag factor 0-0.44 0.09 

3. 
SOL_AWC Available water storage capacity of the soil layer -0.1-0 -0.033 

4. 
ALPHA_BF Baseflow recession constant  0.15-0.47 0.445 

5. 
PLAPS Precipitation lapse rate 7.74-13.92 8.191 

6 
CH_N1 Longest tributary channel length in subbasin. 0.01-13.3 6.057 

7. 
LAT_TIME Lateral flow travel time 0-79.21 31.446 

8. 
GW_DELAY Delay time for aquifer recharge 0-250 16.75 

9. 
CN2 SCS runoff curve number for moisture condition II  -0.1-0.1 -0.095 

 

 

SWAT model performance at Tanahun station (430.5) 

The calibration period for this station was picked from 

2000 to 2009 based on the availability of flow data, and 

the validation period was taken from 2010 to 2015. The 

hydrological model can accurately recreate the low flows, 

as seen by the daily and monthly hydrographs in Figures a 

and b. The model simulates the low flows rather well, but 

it slightly overestimates the big flows. based on scatter 

graphs of the simulated and real-world flow during the 

calibration and validation periods. The model can 

faithfully replicate the annual average flow pattern at the 

calibration station, according to the flow duration curve. 

Good performance statistics are presented in  Table 5 9 & 

Table 5 10 and the calibration accurately depicts the 

volume balance. 

 

 

Figure 5 16: Results 1 of SWATCUP at Tanahun Station 

Note: The graph in the Figure 5 16 represents a) Daily 

Hydrograph from 2000 to 2015 b) Monthly Hydrograph 

from 2000 to 2015 c) Flow Duration Curve & d) 

Cumulative Flow (Daily) at Station 430.5 
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Figure 5 17: Results 2 of Tanahun Station 

Note: The graph in the Figure 5 17 represents the e) 

Scatter plot of daily simulation & f) Scatter plot of 

monthly simulation at Tanahun Station 

 

The Model Performance at the Tanahun Station is Table 5 

9 & Table 5 10: 

 

Table 59: Model Performance at Tanahun Station 

(Q430.5)-I 

 

 Calibration 

(2000-2009) 

Validation 

(2010-2015) 

Entire 

period 

(2000-

2015) 

Daily NSE 0.69 0.80 0.72 

R2 0.73 0.82 0.75 

PBIAS 18.2 10.7 15.7 

Monthly NSE 0.90 0.90 0.90 

R2 0.93 0.92 0.93 

PBIAS 18.3 10.7 15.8 

 

 

SWAT model performance at Sishaghat station (Q438) 

Based on the availability of flow data, the calibration 

period for this station was taken from 1998 to 2009, and 

the validation period was taken from 2010 to 2015. 

According to the daily and monthly hydrographs in Figure 

5 18, the hydrological model can faithfully reproduce the 

low flows but it cannot replicate high so the high 

simulation is not perfectly matched up may be due to the 

snow fed area in the upstream of the hydrological station. 

According to scatter plots of the observed and simulated 

flow throughout the calibration and validation periods, the 

high flows are also reasonably precisely duplicated, but 

they are somewhat exaggerated during the validation 

period and slightly underestimated during the calibration 

period. To define the scatter plot perfectly the long-term 

average of the station is taken which is perfectly accurate 

within the pattern. According to the flow duration curve, 

the model can reproduce the calibration station's annual 

average flow pattern. The performance data shown in 

Table are good, and the calibration effectively captures the 

volume balance. 

  

 
 

Figure 5 18: Result of SWATCUP at Station 438 - I 

Note: The graph in the Figure 5 18 represents a) Daily 

Hydrograph from 1998 to 2015 b) Monthly Hydrograph 

from 2000 to 2015 c) Flow Duration Curve & d) 

Cumulative Flow (Daily) at Station 438 

  

 
 

Figure 5 19: Results of SWATCUP at Station 438 – II 

Note: The graph in the Figure 5 19 represents the e) 

scatter plot of daily simulation & f) Scatter plot of 

monthly simulation at Tanahun Station 

 

The Model Performance at the Sishaghat Station in Table 

5 11: 

 

Table 5 11:Model Performance at Sishaghat Station-I 

 

Performance 

parameter 

Calibration 

(1998-2009) 

Validation 

(2010-2015) 

Entire 

period 

(1998-

2015) 

Daily NSE 0.67 0.72 0.69 

R2 0.68 0.78 0.70 

PBIAS -4.8 -23.4 -10.6 

Monthly NSE 0.86 0.89 0.87 

R2 0.88 0.91 0.89 

PBIAS -5.5 4.7 -2.3 

 

Climate change impact on Seti-Gandaki outlet  

The streamflow was approximated using 

meteorological data generated from GCMs. The results are 

displayed on the graph as a percentage when compared to 
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the base value and shows increase in the watershed's 

streamflow throughout every month of the year. The 

streamflow of the baseline period of the catchment’s outlet 

were 99.25 m3/sec annually, 24.37 m3/sec during winter, 

25.81 m3/sec during pre-monsoon, 224.28 m3/sec during 

monsoon and 71.68 m3/sec during post monsoon. Figure 5 

22 and Figure 5 23 shows the change in the seasonal 

alteration among the two scenarios SSP245 and SSP585 

respectively. Where the streamflow is projected to 

increase in seasonal alteration in the catchment outlet. The 

flow of the catchment follows the same trends as that of 

Indrawati river where the streamflow was projected to 

increase in the future scenarios (S. Shrestha et al., 2016).  

 

Table 5 13: Future discharge data at watershed outlet 

compared to baseline data 

 

Mth 

Baselin

e 

ssp245 ssp585 

NF MF FF NF MF FF 

Jan 15.64 60% 74% 68% 68% 52% 71% 

Feb 26.69 47% 98% 37% 37% 51% 72% 

Marc

h 37.00 40% 68% 49% 49% 58% 62% 

April 74.38 90% 96% 79% 79% 90% 97% 

May 188.29 57% 67% 66% 66% 70% 93% 

June 440.30 35% 59% 49% 49% 68% 58% 

July 715.30 49% 61% 40% 40% 64% 75% 

Aug 709.63 25% 38% 26% 26% 56% 54% 

Sep 484.34 30% 38% 28% 28% 57% 51% 

Oct 149.26 16% 39% 31% 31% 39% 41% 

Nov 45.27 33% 44% 33% 33% 48% 52% 

Dec 15.08 

128

% 

114

% 

104

% 

104

% 

154

% 

137

% 

 

3.3. Combined Impacts of Climate Change 

and LULC Change on Streamflow 

The SWAT projected the following discharge data after 

projecting future landuse data and meteorological data for 

the relevant future (near future, mid future, and far future). 

The landuse data projected for the corresponding futures 

were 2030 for the near future (NF), 2060 for the mid 

future (MF), and 2085 for the far future (FF).  Three years 

of warmup period was taken during the simulation of the 

data for each future scenario. 

 

Terrset Change analysis 

The land cover map of 2010 and 2000 A.D. from 

ICIMOD (2020) is used in this study to evaluate the 

change in the land cover as shown in below. The Figure 5 

24 clearly shows huge gain in grassland and forest area 

and losses in cropland and snow/glacier area between 

2010 and 2000. 

 

 
  

Figure 5 24: Gain and loss for different LULC classes 

between 2000 and 2010 (in hectare) 

 

Model validation 

Model validation is necessary to assess the accuracy. In 

this study, Kappa index is used to evaluate the accuracy of 

the predicted LULC map. Kappa variations that compared 

the projected land use/cover map with the actual one 

yields overall accuracy (Kno) = 0.94, Kappa Location = 

1.00, K location strata = 1.00 and K standard = 0.91 which 

falls in fair to good category. Similarly, a comparison 

between the actual 2020 LULC and predicted 2020 LULC 

was done, and the result is presented in Figure 5 25 and 

Table 5 15. 

 

  
 

Figure 5 25: Comparison plot between 2020 actual and 

predicted LULC of watershed 

 

Table 5 15: Comparison between 2020 actual and 

predicted LULC for Seti watershed 

 

LULC 

Class 

ICIMOD 2020 

LULC 

Predicted 2020 

LULC 
Error 

(%) 
Area 

(sq. 

km) 

Percent

age (%) 

Area 

(sq. 

km) 

Percent

age (%) 

Water 

body 
16.887 

0.58111

5 16.589 0.5708 

-

0.0102

7 

Snow/gla

cier 
142.72

6 

4.91141

8 

110.26

0 3.7942 

-

1.1172

1 
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Forest 
1948.5

63 

67.0530

9 

1977.2

90 68.0415 

0.9884

26 

Riverbed 
0.640 

0.02203

6 12.315 0.4238 

0.4017

31 

Built-up 

Area 
33.640 

1.15759

9 9.739 0.3351 

-

0.8224

7 

Cropland 
489.63

2 16.849 

479.07

8 16.4858 

-

0.3632 

Bare soil 

0.071 

0.00245

2 0.002 0.0001 

-

0.0023

9 

Bare 

Rock 
55.712 

1.91712

8 62.939 2.1658 

0.2486

9 

Grassland 
218.12

9 

7.50616

8 

237.79

4 8.1829 

0.6766

94 

 

 

Projection of future LULC 

After the validation of the LULC map, future LULC 

map is projected for the area 2035, 2060 and 2085. The 

comparison of the projected LULC for different period 

shows the gain in forest area and loss in cropland area in 

Table 5 16 and Figure 5 26. 

 

Table 5 16: Area covered by different LULC for 

historical and future period in Seti-Gandaki watershed 

 

Class 

Nam

e 

Historical (From 

ICIMOD) (km2) 
Predicted area (km2) 

2000 2010 2020 2020 2035 2060 2085 

Water 

Body 

16.1

463 

16.6

149 

16.8

872 

16.5

888 

16.5

888 

16.5

888 

16.5

888 

Snow 
196.

546 

118.

734 

142.

726 

110.

26 

89.7

309 

85.2

642 

90.9

684 

Fores

t 

1747

.93 

1847

.73 

1948

.56 

1977

.29 

2104

.47 

2214

.49 

2266

.44 

River

bed 

13.7

724 

12.3

259 

0.64

037 

12.3

147 

12.3

147 

12.3

147 

12.3

147 

Built 

up 

area 

7.83

884 

9.73

302 

33.6

398 

9.73

89 

9.73

89 

9.73

89 

9.73

89 

Cropl

and 

698.

029 

608.

545 

489.

632 

479.

078 

351.

899 

241.

878 

189.

932 

Bare 

Soil 

36.2

045 

0.00

177 

0.07

124 

0.00

18 

0.00

18 

0.00

18 

0.00

18 

Bare 

Rock 

189.

5356 

62.8

6051 

55.7

1174 

62.9

388 

62.9

388 

62.9

388 

62.9

388 

Grass

land 0 

229.

4539 

218.

1292 

237.

7944 

258.

3234 

262.

7901 

257.

0859 

 

 
 

Figure 5 26: Projected LULC map for future time period 

of Seti-Gandaki watershed. 

 

LULC and climate change impact on Seti-Gandaki 

outlet 
When the data are compared to the baseline of the 

watershed outlet (1998-2015), they projected the 

increment on the streamflow throughout every month on 

future except June of SSP245. Different LULC map were 

used for different future scenarios (NF, MF, FF). The 

streamflow of the baseline period of the catchment’s outlet 

were 99.25 m3/sec annually, 24.37 m3/sec during winter, 

25.81 m3/sec during pre-monsoon, 224.28 m3/sec during 

monsoon and 71.68 m3/sec during post monsoon. Figure 5 

29 and Figure 5 30 shows the change in the seasonal 

alteration among the two scenarios SSP245 and SSP585 

due to the combined impact of climate change and land 

use change in the watershed’s outlet respectively. Where 

the streamflow is projected to increase in seasonal 

alteration in the catchment outlet. The watershed outlet 

does follow the specific trend. 

 

Table 5 17: Future discharge data at watershed outlet 

compared to baseline data. 

 

Months 

Baseli

ne 

ssp245 ssp585 

NF MF FF NF MF FF 

January 15.64 

117

% 68% 82% 

143

% 65% 52% 

Februar

y 26.69 35% 72% 49% 43% 52% 38% 

March 37.00 18% 52% 42% 30% 60% 54% 

April 74.38 22% 82% 68% 15% 92% 

125

% 

May 188.29 15% 61% 79% 29% 64% 

113

% 

June 440.30 -2% 54% 50% 17% 71% 

106

% 

July 715.30 23% 51% 57% 35% 61% 90% 

August 709.63 26% 35% 44% 27% 57% 

100

% 

Septem

ber 484.34 44% 33% 55% 48% 57% 

106

% 

October 149.26 123 45% 48% 138 53% 99% 
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% % 

Novemb

er 45.27 

188

% 60% 80% 

203

% 75% 

103

% 

Decemb

er 15.08 

291

% 

130

% 

150

% 

293

% 

190

% 

204

% 

 

4. Conclusion 

In this comprehensive study, the integration of 

hydrological modeling through the Soil and Water 

Assessment Tool (SWAT) and the projection of future 

climate data using the Coupled Model Intercomparison 

Project Phase 6 (CMIP6) at a resolution of 25 kilometers 

provided a nuanced understanding of the Seti-Gandaki 

watershed. The strategic selection of five General 

Circulation Models (GCMs) for ensemble projections 

facilitated a holistic examination of the potential shifts in 

precipitation and temperature and their subsequent 

impacts on the hydrological dynamics of the region. 

The climate projections highlight an anticipated 

increase in precipitation and both minimum and maximum 

temperatures in the coming years. These changes are 

poised to exert considerable influence on the local 

ecosystem, particularly affecting seasonal crop yields due 

to the altered monsoon patterns. The rising temperatures 

also present a significant threat to the process of snowmelt 

in the Himalayas, further complicating the region's 

hydrology. 

The study's forecasted intensification of streamflow 

signifies elevated river levels, posing heightened risks of 

floods and landslides. Projections under the Shared 

Socioeconomic Pathway (SSP) scenarios indicate a 

substantial increase in streamflow during monsoons, with 

percentages reaching 49% and 61% for SSP245 and 

SSP585, respectively. This poses a grave threat to 

communities along the Seti River, exacerbating the 

existing challenges of floods and landslides. 

In addition to climate change, the transformation of 

Land Use and Land Cover (LULC) emerges as a critical 

issue. Urbanization and diminishing rural populations 

contribute to problems such as dwindling agricultural land 

and expanding barren areas. The projected shrinkage of 

snow-covered regions further compounds the challenges. 

However, an intriguing finding is the potential positive 

impact of increased streamflow within the watershed, 

offering opportunities for enhanced hydropower 

generation and meeting agricultural water demands. 

To address these challenges and contribute to 

sustainable water resource management and climate 

resilience, a set of strategic recommendations is proposed. 

Implementing robust water management plans that address 

precipitation variability through improved storage, 

efficient irrigation systems, and water-saving practices is 

paramount. Simultaneously, active efforts to reduce 

greenhouse gas emissions by transitioning to clean energy 

sources, enhancing energy efficiency, and adopting 

sustainable transportation practices are essential. 

Investments in infrastructure preparedness, including 

the development of systems to mitigate the impacts of 

rising river levels and the establishment of flood and 

avalanche early warning systems, are crucial. 

Concurrently, ongoing research to deepen the 

understanding of climate change effects and adaptation 

measures is imperative. Maintenance of fish ladders to 

preserve aquatic biodiversity amid increased silt flow in 

the river is vital for ecosystem health. 

Lastly, advocating for green spaces and sustainable 

urban planning in metropolitan areas can significantly 

contribute to carbon absorption. Establishing a 

comprehensive monitoring system for tracking LULC 

changes and their impact on climate is essential for 

refining climate strategies over time. By embracing these 

recommendations, stakeholders can actively contribute to 

the resilience and sustainability of the Seti-Gandaki 

watershed. 
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