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A B S T R A C T

Nepal, known for its challenging topography and fragile geology is confronted with the constant threat of floods
leading to substantial socio-economic losses annually. However, the country's efforts in planning and managing
flood risks remain insufficient, especially in the vulnerable Mohana-Khutiya River. Therefore, this study focused
on the Mohana-Khutiya River and utilizes the Maximum Entropy (MaxEnt) model to comprehensively map flood
susceptibility and fill crucial gaps in flood risk assessments. This study employed a combination of 10 geospatial
environmental layers and field-based past flood inventory to implement the MaxEnt machine learning model for
flood susceptibility modeling. The available past flood data were divided into two sets, with 75% allocated for
model construction and the remaining 25% for model validation. This study demonstrated that the proximity of
the river had a significant impact (33.1%) on the occurrence of the flood. Surprisingly, the amount of annual
precipitation throughout the year exhibited no detectable contribution to the flood event in the study site. About
4.9% area came under the high flood susceptible zone followed by 12.75 % in the moderate zone and 82.34% in
the low-risk zone. The model exhibited excellent performance with an Area Under Curve (AUC) value of 0.935
and a low standard deviation of 0.018, indicating accurate predictions and consistent precision. These results
highlight the model's reliability and its significance for developing disaster management policy by local gov-
ernment in the study site. Future research should refine the MaxEnt model by including more variables, validating
against observed flood events, and exploring integration with other flood modeling approaches.
1. Introduction

Floods are highly prevalent and catastrophic natural phenomenon
that occurs on a global scale (Ghapar et al., 2018; Glago, 2021). In 2019,
approximately 24.9 million new displacements were recorded globally,
with nearly three-quarters attributed to disasters. Weather-related haz-
ards, specifically floods, accounted for over 95 % of these displacements,
amounting to around 10 million people affected (IDMC, 2020). Floods
triggered 2.7 million internal displacements across the world, signifi-
cantly fewer than the 5.3 million recorded in 2021 (IDMC, 2023). Flood
is described as a natural calamity that arises from the excessive accu-
mulation of water in an area, typically caused by heavy rainfall, snow-
melt, river overflow, or other factors (Barredo, 2007; Sivakumar, 2015).
It is classified based on various criteria, including their source (riverine,
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coastal, flash floods), location (localized, urban, rural), severity or
recurrence interval (normal, severe, catastrophic floods), duration
(short-term, long-term floods), impact (minor, moderate, major floods),
and geological setting (fluvial, pluvial, coastal floods) (Glago, 2021).

Floods can have significant socio-economic impacts including dam-
age or destruction of property, displacement of communities, posing risks
to human lives and health, as well as adverse effects on ecosystems and
natural resources such as soil erosion, sedimentation, and water pollution
(Glago, 2021). However, it's important to note that floods can also have
positive impacts, such as contributing to the replenishment of water re-
sources, enriching soil fertility through sedimentation, and creating or
restoring habitats for various plants and animals (Aldardasawi and Eren,
2021).

Approximately 23% (equivalent to 1.81 billion individuals) of the
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global population is at risk of being directly impacted by flooding that
has a depth of over 0.15 m (Rentschler et al., 2022). About 89% of the
global population vulnerable to floods resides in developing countries
(Rentschler et al., 2022). In Sub-Saharan Africa, 44% of the 170 million
people are in extreme poverty (less than $1.90 per day) and face signif-
icant flood risk (Rentschler et al., 2022). While subsisting on less than
$5.5 per day, at least 780 million people live in areas in high danger of
flooding (Rentschler et al., 2022). In 2021, there were 206 major flood
disasters worldwide, causing over 4393 deaths and affecting 29.2 million
people. These flood disasters resulted in direct economic losses exceeding
USD 74.6 billion, accounting for about 30% of total disaster economic
losses (Global Natural Disaster Assessment Report, 2022). In Western
Europe in 2021, more than 180 people died, over 750 were injured, and
many suffered financially (Lehmkuhl et al., 2022). Conversely, roughly
243 individuals perished in European countries like Germany, Belgium,
Romania, Italy, and Austria because of flooding (European floods, 2021).
In West and Central Africa in 2021, flooding impacted 1.4 million in-
dividuals spanning 15 nations, resulting in 305 deaths, thousands of in-
juries, and the displacement of nearly 378,000 individuals (OCHA,
2022). Similarly, in 2022, flooding in New South Wales and Queensland,
Australia, claimed 26 lives, damaged thousands of homes, and led to
billions in insurance claims (AIDR, 2022).

Comparatively South Asian countries are highly vulnerable to flood-
ing and its consequences. Over 1.24 billion people reside in flood-prone
areas, notably China (395 million individuals) and India (390 million
individuals) collectively representing almost a quarter of the global
population (Rentschler et al., 2022). Countries like India, China,
Bangladesh, and Pakistan have grappled with flood risks for decades
(ADPC, 2005; Kazi, 2014; Abbas et al., 2016). India, Nepal, and
Bangladesh are linked due to the flood effect, which killed 1200 people
and affected 41 million people in Southern Nepal, Northern India, and
Bangladesh (IFRC, 2020). Additionally, in July 2021, flooding in China
claimed the lives of 398 people (Ye, 2022). For instance, Pakistan
experienced widespread flooding, affecting 33 million people and
resulting in over 1700 deaths as of November 2022 (UNICEF, 2022). In
India's Assam state, floods impacted 5.6 million people, displacing 4.7
million, damaging 108,308 ha of crops, and affecting millions of animals
in 2022 (Juned, 2022). Similarly, in China's Henan province, a devas-
tating flood claimed hundreds of lives in July 2021 (Ye, 2022). Compared
to the average for the last 30 years, the frequency of flood disasters
increased by 48% globally in 2021, however the number of fatalities was
35% less, and the count of affected individuals was 71% less (Global
Natural Disaster Assessment Report, 2022).

Due to rugged topography, concentrated monsoon rains, fragile ge-
ology, and unsustainable land management, Nepal is also highly sus-
ceptible to devastating floods with a recorded 4160 floods from 1971 to
2016 resulting in casualties and infrastructure damage (Shrestha et al.,
2022). Each year, floods in Nepal lead to an average of 175 fatalities and
cause economic losses that surpass USD 140 million (ADB, 2019). Nepal
ranks tenth globally in terms of physical exposure to fluvial flooding
(ADB, 2019). A total of 4160 floods were documented between 1971 and
2016, leading to both human casualties and significant damage to
infrastructure in Nepal (Shrestha et al., 2022). Floods in Nepal between
1954 and 2018 resulted in 7599 fatalities, 6.1 million impacted, and 10.6
billion USD in losses to the economy (EmDAT, 2019). In 2017, 179
people died, more than 75 people were injured, 42 individuals remain
missing, and the impact extended to 15,303 households (Sharma et al.,
2019).

In August 2017, major flooding affected around 1.7 million people in
Nepal, resulting in at least 140 deaths and 80% of the Terai region being
flooded (UNICEF, 2017). The damage was estimated to cost the gov-
ernment USD 584.7 million, with an additional USD 375.8 Million
required for housing reconstruction alone (NPC, 2017). According to
historical records, Nepal had significant flooding in the Tinao, Koshi,
Tadi, and Sunkoshis basins in the years 1978, 1980, 1985, and 1987
respectively that took the lives of 1336 individuals (Ghatak et al., 2012;
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Kafle et al., 2017). In October 2021, Nepal faced a 15% excess in
monsoon rainfall, resulting in substantial agricultural losses, including
the destruction of rice crops worth around 26 billion Nepalese rupees,
along with associated human and property casualties (OCHA, 2021;
MoAD, 2021). Therefore, Nepal's vulnerability to floods is a serious
concern due to its high susceptibility to seasonal monsoon floods which
needs to be addressed to minimize potential casualties and property
damage (Dewan, 2015).

Flood susceptibility mapping (FSM) has been employed to detect and
characterize areas at elevated risk of flooding based on their physical
attributes (Vojtek and Vojtekov�a, 2019). These maps play a pivotal role
in minimizing flood-related damages, a critical aspect of disaster miti-
gation efforts (Sahoo and Sreeja, 2015). The identification of regions
prone to flooding involves the consideration of factors like topography,
land use, soil types, and hydrological features (Lee and Kim, 2021). The
primary objective is to facilitate targeted measures that decrease the
likelihood of flooding, thereby reducing associated damages and
contributing to the overall reduction of disaster risks (Rosmadi et al.,
2023). Furthermore, these maps are instrumental in developing early
warning systems, and enhancing the readiness and response capabilities
of communities located in high-risk areas (Bajracharya et al., 2021).
Therefore, various traditional methods for FSM have been used previ-
ously in Nepal (Banstola et al., 2019; Dhakal, 2020; Karki and Khadka,
2020; Karna et al., 2021; Paudel et al., 2019; Regmi, 2021; Sangroula
et al., 2022; Shrestha et al., 2022).

These studies have primarily relied on physical process-based models,
such as hydrological models like Hydrologic Engineering Center's Hy-
drologic Modeling System (HEC-HMS) (Karna et al., 2021; Paudel et al.,
2019; Sangroula et al., 2022), Hydrologic Engineering Center's River
Analysis System (HEC-RAS) (Banstola et al., 2019; Dhakal, 2020; Regmi,
2021; Shrestha et al., 2022), Soil and Water Assessment Tool (SWAT)
model (Karki and Khadka, 2020), as well as statistical methods that fit
probability distribution functions to annual maximum values (Brunner
et al., 2021). Nonetheless, each of these methodologies comes with its set
of constraints. For instance, physically based models and numerical
models depend upon various hydro-geomorphological observation data
(Antwi-Agyakwa et al., 2023; Khosravi et al., 2016a; Mosavi et al., 2018).
Additionally, challenges arising from issues of data reliability and
accessibility due to the nature of the terrain, climate, or other factors in
physically based and numerical modeling can significantly impact the
accuracy and applicability of these models (Khosravi et al., 2016a; Seydi
et al., 2022). Furthermore, computational complexities and parameter
selection in physically based models are also hurdles affecting the reli-
ability and accuracy of the model outputs (Fu et al., 2020).

In recent years, the increasing popularity of employing multi-criteria
decision-making methods in FSM is evident. However, the reliance on
expert judgment in these methods introduces biases, and even minor
adjustments in parameter weights can significantly influence the out-
comes (de Brito et al., 2019; Ali et al., 2020; Mehravar et al., 2023).
Conversely, widely used statistical methods like frequency ratio (Tehrany
et al., 2014, 2017) and logistic regression models are prevalent in flood
modeling but are constrained by linear assumptions, potentially over-
looking the non-linear behavior of floods (Sharma et al., 2019; Khosravi
et al., 2016a; Andaryani et al., 2021). While
hydrological/hydraulic-based models leverage non-linearity, their accu-
racy may be influenced by geomorphological and environmental factors
(Seydi et al., 2022). For basins exceeding 1000 km2, achieving accurate
two or three-dimensional analysis using hydrodynamic models like
HECRAS becomes impractical (Khosravi et al., 2016a).

With no prior assumptions or in-depth knowledge of the physical
processes, the Machine Learning approach has been developed to over-
come the limitations of traditional models for FSM (Mishra et al., 2022).
To do this, information based on available data is leveraged. Rapid
geographic data analysis is made possible by this machine-learning
approach (Dodangeh et al., 2020; Mishra et al., 2022). Artificial neural
networks (Andaryani et al., 2021), support vector machines (Li et al.,
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2019a,b; Costache et al., 2020; Nachappa et al., 2020), gradient boosting
(Ghosh et al., 2022; Seydi et al., 2022), and random forest (Schmidt et al.,
2020; Nachappa et al., 2020) are some frequently used machine learning
approach in FSM. However, in Nepal, very few studies have been con-
ducted using a machine-learning approach in the realm of flood risk
management.

For instance, studies have explored the application of Gaussian pro-
cess regression and support vector machines in the Koshi Basin (Baig
et al., 2022). Similarly, Shreevastav et al. (2022) employed Maximum
Entropy (MaxEnt) model in the Southern Bagmati corridor (Sarlahi and
Rautahat) to identify flood risk-prone areas as well as model flood sus-
ceptibility in a segment of the Bagmati basin. The MaxEnt model offers
several advantages that make it well-suited for flood susceptibility
assessment in areas with limited hydraulic and hydrological data
(Shreevastav et al., 2022). One key advantage is its ability to make pre-
dictions based solely on the presence of past flood events, eliminating the
need for extensive stream flow observations for calibration and valida-
tion (Phillips et al., 2006; Zeng et al., 2021). This is particularly valuable
in situations where such data may be scarce or contain gaps, as is often
the case in developing countries like Nepal (Skilodimou et al., 2019;
Jehanzaib et al., 2022). Furthermore, the MaxEnt model is capable of
integrating external data sources, such as satellite imagery, to estimate
crucial environmental variables like precipitation and temperature (Zeng
et al., 2021). This is a crucial feature in areas where direct measurements
of these variables may not be readily available (Zeng et al., 2021). In this
context, the MaxEnt model emerges as the best alternative for flood
susceptibility modeling research.

Mohana-Khutiya River of Nepal is particularly vulnerable to flood and
erosion hazards due to its steep slopes (average 25.3�) and unstable
geological structure in the Siwalik, combinedwith the flat and vulnerable
floodplain zone in the south (Marsh, 2020). Additionally, the lack of
forest cover in the bank corridor increases the risk of stream bank
erosion, which might result in land loss and property damage (Marsh,
2020). Despite the high risk of flooding in the region, there are inade-
quate flood risk assessments that can guide local authorities and com-
munities in disaster preparedness and management. The local
government and disaster management authorities play a critical role in
safeguarding communities against the impacts of floods (Shah et al.,
2019). By providing a detailed and accurate flood susceptibility map for
the Mohana-Khutiya River, this research offers invaluable support to
local government agencies in enhancing their disaster management
plans. The utilization of a machine learning approach ensures a
cost-effective and efficient means of generating these maps (Shreevastav
et al., 2022), proving especially advantageous in regions with limited
data availability like the Mohana-Khutiya River.

The significance of this research extends to its potential impact on
resource allocation and prioritization within disaster management stra-
tegies in the Mohana-Khutiya River. By harnessing advanced technology
to create accurate flood susceptibility maps, local authorities can opti-
mize their preparedness and response efforts, ultimately leading to more
effective risk mitigation and reduced socio-economic losses (Parajuli
et al., 2023). Therefore, our study further extends the application of the
MaxEnt model to predict flood susceptibility (Shreevastav et al., 2022) in
the Mohana-Khutiya River of Nepal. By expanding the application of this
model, we aim to deepen our understanding of flood risk dynamics,
pinpoint high-susceptibility zones, and establish tailored approaches to
alleviate floods and manage disasters within the Mohana-Khutiya River
area of Nepal. We also aim to contribute to an advanced understanding of
the innovative MaxEnt model's applicability in different geographical
contexts within Nepal.

2. Methodology

2.1. Study site

The current research took place within the Mohana-Khutiya River
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area (Fig. 1), positioned between the Siwalik Ranges and the Terai region
(Marsh, 2020). The Siwalik Ranges represent the youngest mountain
range in the Himalayan orogeny, and they stand out as one of the most
dynamically active zones within the Himalayas (Upreti, 1999; St€ocklin,
2008). The geological dynamics in this area, including rock deformation,
dislocation, and uplift, have resulted in an intricate geological configu-
ration and an unstable landscape prone to erosion (Nakata, 1989; Lav�e
and Avouac, 2001). The climate of the study site is tropical. Due to the
Mohana-Khutiya River's high susceptibility to flooding, over the years,
floods have claimed lives, damaged homes, and other buildings, dis-
rupted public infrastructures, and destroyed agricultural land and
harvests.

The riverbanks of the Mohana River system are very fragile and prone
to erosion and some of its areas are even flattened due to flooding. With
heightened rainfall intensity, river discharge increases to such an extent
that the incidence of flood events escalates, resulting in property damage
throughout the rainy season (Marsh, 2020). This river experienced 390
floods between 1991 and 2015, of which 35 caused economic losses of at
least NRs 1 million, 37 resulted in a total of 440 fatalities, and 79 resulted
in the destruction of more than 10 dwellings (ADB, 2020). In October
2021 and 2022, unseasonal rain caused flooding and destroyed
harvest-ready paddy crops in Kailali and Kanchanpur (Fig. 2) (The
Kathmandu Post, 2021; The Himalayan, 2022; Beshir et al., 2022).
Anticipated increases in population and resource development within
flood-prone zones of the Terai Region are expected to elevate the like-
lihood of flooding. This risk will be made worse by climate change
(Marsh, 2020).

Hence, the Mohana-Khutiya River is identified as a priority River for
Flood Risk Management by the Ministry of Energy, Water Resources and
Irrigation of Nepal to manage the flows through rivers to reduce the
incidence of severe floods and provide protection to people, houses,
public infrastructure, and agricultural land.

2.2. Data used

2.2.1. Inventory of flood history and environmental variables
A total of 45 flood occurrence data were collected from the study site.

From this collection of flood occurrence locations, a training group
consisting of 34 flood locations, or 75%, and a validation group con-
sisting of 11 flood locations, or 25%, was created. Total 10 environmental
parameters i.e., Annual temperature, Soil type, Annual precipitation,
Land Use Land Cover Change (LULC), Topographic Wetness Index (TWI),
River distance, Digital Elevation Model (DEM), Normalized Difference
Vegetation Index (NDVI), Drainage density and Slope were utilized for
flood forecasting using MaxEnt model (Table 1).

2.2.2. Multicollinearity analysis
Before running the mode, the correlation was run among the envi-

ronment layer (independent layer). To prevent the multicollinearity
impact and improve model performance, one variable is deleted if the
correlation between the two variables is more than 0.8.

To finish this method, field data from several flooding events that had
happened in the study area were verified using the Area Under the Curve
(AUC) method (Fig. 3).

3. Results

3.1. Flood susceptibility mapping of the study area

Flood susceptibility was categorized into three zones i.e., High (Red
color), Moderate (Yellow color), and Low (Blue color) (Fig. 4). About
4.9% area came under the high flood susceptibility zone followed by
12.75 % in the moderate zone and 82.34% in low susceptibility zone
(Table 2).



Fig. 1. Map of the study site showing the Mohana-Khutiya River.

Fig. 2. Flood events at the study site on July 19, 2022 (Photo credit: Dependra Singh, 2022).
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3.2. Flood susceptibility assessment of village

A flood susceptibility assessment of villages was conducted, and vil-
lages were categorized into three groups i.e. high susceptible villages
(dark red color circle), moderately susceptible villages (orange color
circle), and low susceptible villages (green color circle) (Fig. 5). Alto-
gether, there are 20 villages in the high susceptible zone, 46 in the
moderate susceptible zone and 105 in the low susceptible zone (Table 3).
35
3.3. Response of environmental variables to a flood event

The distance from the river contributes higher (33.1%) than others
followed by LULC, DEM, Drainage density, Soil type, Annual tempera-
ture, TWI, Slope, NDVI, and Annual precipitation (Table 4). Among 10
environmental variables, annual precipitation was the least significant
for flood susceptibility modeling in this study area.



Table 1
Data accessibility for environmental variables (Adapted from Shreevastav et al., 2022).

S.N. Environment variables Availability from/source Resolution normalized

1 LULC ArcGIS online(https://livingatlas.arcgis.com/landcover/) 10m � 10m
2 Annual precipitation World Clim(https://www.worldclim.org/data/bioclim.html) 10m � 10m
3 Annual temperature World Clim(https://www.worldclim.org/data/bioclim.html) 10m � 10m
4 Soil type ICIMOD(https://rds.icimod.org/home/datadetail?metadataid¼1889) 10m � 10m
5 NDVI Sentinel-2(https://dataspace.copernicus.eu/explore-data/data-collections) 10m � 10m
6 River distance ICIMOD(http://rds.icimod.org/Home/DataDetail?metadataId¼2956) 10m � 10m
7 TWI From DEM(https://earthexplorer.usgs.gov/) 10m � 10m
8 DEM USGS(https://earthexplorer.usgs.gov/) 10m � 10m
9 Drainage density From DEM(https://earthexplorer.usgs.gov/) 10m � 10m
10 Slope From DEM(https://earthexplorer.usgs.gov/) 10m � 10m
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3.3.1. Distance from river
There was an inverse relationship between flood susceptibility and

distance from the river network, implying that increasing distance re-
duces the possibility of flooding (Fig. 6).

3.3.2. Land use land cover (LULC)
Flood susceptibility was the highest in shrub/scrub land compared to

other LULC (Fig. 7). Among seven LULC classes, the lowest flood sus-
ceptibility was found in trees (i.e., Forest).

3.3.3. Digital Elevation Model (DEM)
Similar to Distance from River, there was an inverse relationship

between flood susceptibility and elevation i.e., making plain regions the
most susceptible to flooding catastrophes, which frequently occur in lo-
cations with low topographic elevations or downstream areas (Fig. 8).

3.3.4. Drainage density
Interestingly, drainage density and flood susceptibility demonstrated

a positive relationship i.e., flood susceptibility increased with increasing
drainage density (Fig. 9).
Fig. 3. Methodolog
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3.3.5. Soil type
Flood susceptibility was the highest in Haplaquents, Haplaqepts, and

Eutrocrepts soil compared to other soil (Fig. 10).

3.3.6. Annual temperature
Till 24 �C there was no substantial link between susceptibility of

flooding and annual temperature (Fig. 11). However, the flood risk
increased with rising temperature above 24 �C.

3.3.7. Topographic Wetness Index (TWI)
The flood susceptibility was the maximum at TWI value 5 (Fig. 12).

Flood risk decreased with increasing TWI (value at 24).

3.3.8. Normalized Difference Vegetation Index (NDVI)
Flood susceptibility was the maximum when the NDVI value was

between �0.3 and 0.3 (Fig. 13). However, flood susceptibility decreased
after the NDVI value was 0.3.

3.3.9. Annual precipitation
Flood susceptibility remains constant up to an annual precipitation of
ical flow chart.

https://livingatlas.arcgis.com/landcover/
https://www.worldclim.org/data/bioclim.html
https://www.worldclim.org/data/bioclim.html
https://rds.icimod.org/home/datadetail?metadataid=1889
https://rds.icimod.org/home/datadetail?metadataid=1889
https://dataspace.copernicus.eu/explore-data/data-collections
http://rds.icimod.org/Home/DataDetail?metadataId=2956
http://rds.icimod.org/Home/DataDetail?metadataId=2956
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/


Fig. 4. Flood susceptibility mapping of the study area.
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1500 mm (Fig. 14). However, flood susceptibility sharply rose from 1500
mm to 1700 mm of annual precipitation. The flood susceptibility
declined when annual precipitation was above 1700 mm.

3.4. Performance of MaxEnt model

The calculated Area under Curve (AUC) was 0.935, with a standard
deviation of 0.018 (Fig. 15). The AUC values were divided into three
ranges: less than 0.5 for not fair, 0.7–0.8 for fair, 0.8–0.899 for good, and
above 0.899 for excellent.

4. Discussion

4.1. Flood susceptibility mapping

Through the classification of flood susceptibility into distinct zones,
the spatial distribution of susceptibility has been effectively visualized
(Fig. 4). The identification of approximately 4.9% of the Mohana-Khutiya
River area as high flood susceptible signifies concentrated areas that are
at heightened susceptibility of experiencing significant flooding followed
by 12.75% as moderate susceptible and 82.34% as low flood susceptible
area highlights the varying degrees of vulnerability within the river.
Shreevastav et al. (2022) conducted a similar study in the southern
Bagmati corridor of Nepal, employing the MaxEnt model which reported
that the area under high, moderate, and low flood susceptible was 7.55%
9.48%, and 82.97% respectively. Similarly, at the micro level, the
assessment of flood susceptibility for individual villages within the river
presents a pivotal perspective on localized vulnerability. This study
Table 2
Statistics on flood susceptibility.

S. N Flood susceptibility Area(km2) Percentage (%)

1 High 35.40 4.90
2 Moderate 92.09 12.75
3 Low/No 594.61 82.34
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found that a total of 20 villages are under the high susceptible zone, 46
within the moderate susceptible zone, and 105 within the low zone
(Fig. 5).

In contrast, Shreevastav et al. (2022) observed 41 villages falling
within the high-risk zone, 27 villages within the moderate-risk zone, and
123 villages classified as being in the low-risk zone. This divergence can
be attributed to the distinct hydrological, geographical, and infra-
structural characteristics inherent to the river (Janizadeh et al., 2019;
Dung et al., 2022). This finding holds significant implications for disaster
preparedness, management, and land-use planning. The high flood-risk
areas demand immediate attention due to their risk of severe flooding
(Kron, 2005; Erena and Worku, 2018). These regions could benefit from
the implementation of robust flood protection measures, including
infrastructure improvements and early warning systems (Hallegatte,
2009; Rogers and Tsirkunov, 2011; Perera et al., 2019). Moderate sus-
ceptible areas indicate a need for intermediate measures, such as
enhanced community awareness and preparedness initiatives, to mitigate
potential damages (Abbas et al., 2016; Wang et al., 2022).

The large proportion of low flood susceptible areas provides an op-
portunity for informed land-use planning that considers the lower
vulnerability, promoting sustainable development and reducing expo-
sure to flood hazards (Most and Marchand, 2017). The findings also
underscore the importance of targeted resource allocation and in-
terventions. With precise knowledge of where high and moderate sus-
ceptible areas are concentrated, resources can be channeled more
effectively to areas that need them the most (Munawar et al., 2021). By
incorporating this flood risk assessment into decision-making processes,
authorities can develop strategic disaster response plans, allocate funds
for infrastructure improvements, and prioritize the implementation of
measures that enhance community resilience.
4.2. Performance of environment variables in response to a flood event

This study focuses specifically on utilizing the MaxEnt model to
conduct flood susceptibility modeling in the Mohan-Khutiya River,



Fig. 5. Villages at flood susceptibility.
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located in the Kailali and Kanchanpur districts of Nepal (Fig. 1). The
flood susceptibility modeling refers to the ease with which each section
of the basin is inundated (Hammami et al., 2019; Das, 2019; Das and
Gupta, 2021). There is research using the MaxEnt model in the Koshi
Basin (Baig et al., 2022) and a part of the Bagmati Basin in Nepal
(Shreevastav et al., 2022) using Geographic Information Systems (Ozkan
and Tarhan, 2016). To spatially predict flood susceptibility, an advanced
machine learning model (MaxEnt) was selected for the following reasons:
(1) The MaxEnt model may function with a variety of conditioning fac-
tors; (2) it can also depict the non-linear relationship between flood
conditioning factors and flood occurrence; and (3) the MaxEnt model
doesn't establish strict assumptions before research (Siahkamari et al.,
Table 3
Flood-prone villages.

S.
N

Villages in flood-prone
areas

Name of Villages

1 High Badhara, Bajhangetol, Barhanambarbasti, Bela, Beli, Chau
Khallamauriphata, Kyampas mod Majgau, Mauriphata, Ra

2 Moderate Ailyankatan, Bahuntol, Bandarkhal, Bangragaun, Basantat
Chyakhalakholagaun, Damaura, Devipur, Dhurjanna, Dog
Kaluwapur (Aghillopatti),Khamaura, Khunatola, Kyampas
Najariya, Nargidanda, Panchadhaki, Pathari, Pipariya, Raj
Urma

3 Low A-Gaun, Amarbasti, Attariya, Badeha, Baiyabehadi, Baluw
(Jhanjhatpur),Baskheda, Baskota, Behandi, Bela, Belikatan
Chauraha, Boradandi, C-Gaun, Chapartala, Chatakpur, Cha
Geti, Ghalghaletol, Ghodsuwa, Ghuinyanghat, Godawari,
Jugeda, Jugedakatan, Kadigaun, Kailaligaun, Kankauwa, K
Lalpur, Loharpatti, Majgaukatan, Majgaun, Malakheti, Ma
Mohanpur, Nawadiptol, Olani (Pokhariplat), Pathari, Phak
SantositolShivatalbasti, Shrilanka, Shripur, Simadikatan (O
Urmagoth, Urmi, Uttarpurwa
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2018). Additionally, the MaxEnt model is machine learning-based and
generates spatial predictions based on limited data for flood hazard
zoning (Rahmati et al., 2016a).

Our study found notable correlations between flood inundation oc-
currences and the proximity to rivers (Tehrany et al., 2014; Papaioannou
et al., 2015; Ahmadisharaf et al., 2016). In addition, Eini et al. (2020) in
the Gharesoo and Cham-Bashir rivers crossing Kermanshah City, Iran
found a high risk of flooding near the riverbanks. The finding emphasizes
those certain environmental variables, such as altitude and drainage
density (Figs. 8 and 9), had a greater impact on the likelihood of flooding.
This finding corresponds with the results reported by Kalyanapu et al.
(2012) in Swannanoa River, United States of America (USA), Tehrany
kidada, Dhanchauri, Dhangadhigaun, Geti, Ghodaghat, Kaluwapur, Karkikatan,
jghat, Shantikatan, Shantipur, Tarbariya
ol, Basantapur(Jhanjhatpur),Bhansar, Bhansarkatan, Chaitanyapur, Chatakpur,
hara, Gaurikatan, Geta, Ghodaghat, Gholpurwa, Jaligaun, Jugedakatan, Kaluwapur,
road, Lalpur (Kolikatan),Mallomatiyari, Margaht, Milanchok, Murkatti, Nahartol,
ghat, Saraswatinagar, Setopul, Shantinagar, Shantitol, Shivarampur, Surmikatan, Taratal,

aphata, Bandarpur, Bangesal(Olani),Bankhet, Barbata, Barbatagau, Basantapur
, Belpani, B-Gaun, Bhuihara, Bichawagaudi, Bijaura, Bijayanagar, Bijuliya, Bishalnagar,
ukidanda, Chunepani, Deurali, Devhariya, Devhariyachok, Devipur, D-Gaun, Dhadkuwa,
Haraiya, Hasanpur, Jai,Jamunabhadi, Jhalari, Jhallari, Jokaiya, Jonapur, Joralkatan,
hairana, Khairenikatan, Khallamauriphata, Khamaura, Kudasinkatan, Laksminagar,
lakhetibajar, Manehara, Maneharagaudi, Mataiyakatan, Matiyari, Patela, Mauriphata,
alpur, Pipariya, Pokhrelkatan, Punarbasbasti, Raikawarbichawa, Rajpur,
lanisimalkot), Sodandi, Swarkatan (Olani) Syaulibajar, Taranagar, Teghari, Tribenichok,



Table 4
Contribution of environmental factors.

S.N. Environment variables Contribution (%)

1 River Distance 33.1
2 LULC 30.3
3 DEM 11.9
4 Drainage density 10.6
5 Soil type 9.3
6 Annual temperature 2
7 TWI (Topographic Wetness Index) 1.8
8 Slope 0.5
9 NDVI 0.3
10 Annual precipitation 0

Fig. 7. LULC response to flood susceptibility.

M. Maharjan et al. Natural Hazards Research 4 (2024) 32–45
et al. (2013, 2015a, 2015b) in Malaysia, and Rahmati et al. (2016b) in
the Golastan Province, Iran where these studies employed different
models to conduct flood risk mapping. Regions situated near rivers are at
an elevated vulnerability to flooding owing to heightened flood suscep-
tibility (Fig. 6).

Furthermore, Li et al. (2019) discovered in global fourth-level wa-
tersheds that lower places with low elevation are more susceptible to
damage, which is similar to our findings (Fig. 8). The elevated flow
concentration in areas adjacent to the stream network significantly am-
plifies the likelihood of flooding occurrences (Glenn et al., 2012). The
flood susceptibility was higher in shrubs than in other land covers (Fig. 7)
which contrasts with prior studies i.e. Sugianto et al. (2022) and Zhang
et al. (2018) which reported shrubs as an important land cover in con-
trolling river discharge. The flood magnitudes exhibited a decline in re-
gions characterized by higher elevations (Fig. 8). The response curves for
elevation confirm this finding, showing that low-lying areas and plains
are particularly vulnerable to flooding (Javidan et al., 2021). In areas
with lower elevations, a significant volume of water goes into the stream
network, leading to the flood incident (Lee et al., 2017). The findings of
this study also concur with Dang and &Nguyen (2018) and Mashao et al.
(2023) studies in the Lam River basin, Vietnam, and the east coast of
South Africa respectively, which indicated that greater drainage densities
led to an augmented flow of runoff, which is directly linked to a
heightened susceptibility of flooding.

Moreover, Kal�edj�e et al. (2019) revealed that the higher the drainage
density of a specific region, the more likely to be flooded which justifies
its major influence on flood occurrence in Batouri (East Cameroon). The
drainage pattern of an area can be influenced due to various factors like
steepness of slopes, the rate at which water infiltrates the ground, the
condition of vegetation cover, the characteristics of the soil structure and
composition, and the geological formation (Pourtaghi and Pourghasemi,
2014). Haplaquents, Haplaqepts, and Eutrocrepts soil types are dominant
in Terai and Inner Terai region (Gurung, 2020) which indicates high
flood susceptibility in Terai (Fig. 10). Furthermore, the flood
Fig. 6. River distance response to flood susceptibility.
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susceptibility increased with rising temperature (Fig. 11). Because tem-
perature is closely related to precipitation, elevated temperatures
(beyond 24-degree Celsius) lead to increased rainfall due to precipitation
triggered by local evapotranspiration and, as a result, increased flood
susceptibility (Tabari, 2020).

The flood susceptibility was high at TWI value 5 and then decreased
as TWI increased (Fig. 12). Similar trend was observed by Riadi et al.
(2018) in Karawang regency in West Java Province in Indonesia which
described a surge in flood susceptibility at TWI value > 25 and then
decreased as TWI increased. However, our study's findings differ from
Shreevastav et al. (2022) regarding the TWI trend in the southern Bag-
mati corridor of Nepal which reported a low flood risk until a TWI value
of 15. Our study showed an inverse relationship beyond that threshold
(Fig. 12). Furthermore, Das (2019) reported higher the TWI value the
more floodable the area in the Ulhas basin, India. There may be certain
regions with a high flood hazard level based on the flood hazard zones
identified by TWI map analysis through TWI map analysis, particularly in
regions with a history of past flood incidents (Riadi et al., 2018).

NDVI also has an impact on flood occurrence (rise and fall) (Fig. 13)
which is similar to the finding by Askar et al. (2022) in Iraq. NDVI out-
comes demonstrated consistency with the findings of prior studies by
Tehrany et al. (2017) in China and Khosravi et al. (2016) in Haraz
Watershed, Iran which applied multivariate statistical methods i.e., Lo-
gistic Regression and other models for flood risk (Mind'je et al., 2019). In
contrast, Mashao et al. (2023) in South Africa showed that NDVI has no
relationship with flood risk. Moreover, the occurrence of floods was
influenced by deforestation resulting from agricultural activities and
infrastructure development, including roads, recreational areas, and
clustered settlements, in areas identified as highly susceptible based on
NDVI modeling (Shreevastav et al., 2022). The higher the NDVI value,
more the green vegetation which lowers direct runoff and controls floods
(Shreevastav et al., 2022).
Fig. 8. Flood susceptibility response to elevation.



Fig. 9. Flood susceptibility response to drainage density.

Fig. 10. Flood susceptibility response soil type.

Fig. 11. Flood susceptibility response to annual temperature.

Fig. 12. Flood susceptibility response to TWI.

Fig. 13. Flood susceptibility response to NDVI.

Fig. 14. Flood susceptibility response to annual precipitation.
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The flood susceptibility remains constant till 1500 mm of annual
precipitation (Fig. 14). However, Shreevastav et al. (2022) highlighted
the constant flood risk up to 1400 mm of annual precipitation in the
southern Bagmati corridor, Nepal. Bl€oschl et al. (2017) found that an
increase in extreme precipitation resulted in greater flood discharges in
Northwestern Europe. Prior studies in Germany (Schaller et al., 2014),
USA (Risser andWehner, 2017; Van Der Wiel et al., 2017), France (Philip
et al., 2018), and Bangladesh (Philip et al., 2019) also stated precip-
itation/rainfall as the main causes of the flooding. On the other hand,
intense rainfall in Dhaka (1988, 1998, 2004, 2007, 2015, 2016, 2017),
along with other cities including Chittagong, Khulna, and Sylhet in
40
Bangladesh leads to recurrent urban flooding and water logging issues
(Dasgupta et al., 2015; Kabir et al., 2020). Pakistan has experienced
recurring flooding in the years 2010, 2011, 2012, 2014, 2015, and 2017
due to heavy rainfall, while urban flooding is expected in major cities
during the monsoon season (UNDRR, 2019; Shah et al., 2020).

Similarly, Colombo and its surrounding suburbs in Sri Lanka have
experienced a notable surge in occurrences of flooding during the recent
decades, and while the northern area of Kabul city, Afghanistan, has seen
the emergence of urban flooding as a prominent problem during the
monsoon season, marked by intense rainfall and insufficient drainage



Fig. 15. AUC curve.
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systems (Manawi et al., 2020; Manawadu and Wijeratne, 2021). A study
by Duwal et al. (2023) showed that rainfall is considered a triggering
factor for flooding and that increasing rainfall increases the possibility of
flood incidences in Nepal's Karnali river basin. While a rise in precipi-
tation typically amplifies the potential for floods (Shreevastav et al.,
2022; Mashao et al., 2023), our findings reveal a contrary trend with a
decrease in flood risk as precipitation levels increase (Fig. 14). Similar
results reported by prior studies in the USA indicating that extreme
precipitation alone might not be the most accurate predictor of flooding
(Ivancic and Shaw, 2015; Mallakpour and Villarini, 2015; Berghuijs
et al., 2016).

This is likely due to an increase in infiltration resulting from shal-
lower freezing depths (Frolova et al., 2017). In general, more than mean
rainfall, extreme rainfall rises with global mean surface temperature
(Berg et al., 2013; Myhre et al., 2019), since the latter is constrained by
evaporation, although extremes are also subject to alter due to localized
in-storm processes. Simply put, more water vapor can be stored in
warmer air and eventually fall as rain (Trenberth et al., 2003). In
Clausius-Clapeyron scaling, the atmospheric water vapor capacity in-
creases by approximately 6%–7% per degree of warming (Allan et al.,
2014). More moisture in a warming environment can consequently result
in more intense rainfall crises; this scale offers a first approximation
(Fowler et al., 2021). As a result, this is incompatible with the idea that
increases in intense rainfall (caused by temperature increases) will in-
crease flood hazard globally (Blenkinsop et al., 2021). Furthermore,
multiple studies have emphasized that factors like elevation, drainage
density, and proximity to streams are the primary indicators closely
linked to the susceptibility to incidents of floods (Convertino et al., 2014;
Khosravi et al., 2016a,b; Bui et al., 2016).

4.3. Performance of MaxEnt model

The AUC depicting the MaxEnt model's performance is illustrated in
Fig. 15. The flood points were arbitrarily divided into training (75%) and
verification (25%) groups to develop and validate the model using the
AUC methodology. The AUC demonstrated the model's performance of
79.8% performance rate (Mind'je et al., 2019), which is significantly
lower than our study's performance. In this study, the AUC was deter-
mined to be 0.935, with a standard deviation of 0.018 (Fig. 15). Mashao
et al. (2023) observed an AUC value of 0.899, which is somewhat less,
and a standard deviation of 0.065, which is greater than our finding.
However, this model's performance is lower than the study conducted by
Javidan et al. (2021) at 97.2% but slightly higher than other studies i.e.
90% (Azare, 2021; Moradi et al., 2021), at 88.5% (DavoudiMoghaddam
and Haghizadeh, 2020) and 76% (Darabi et al., 2020).

A study by Siahkamari et al. (2018) in the Madarsoo Watershed, Iran
also found an AUC value of 92.6%which is close to our finding. A finding
by Shreevastav et al. (2022) shows that the AUC value was 0.931 with a
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standard deviation of 0.019 which is very near to our result value
(Fig. 15). In the Golestan Province of Iran, AUC ranges between 0.933
and 0.936 for the floods using MaxEnt model (Javidan et al., 2021).
Harshasimha and &Bhatt (2023) found an AUC value of 0.83 concerning
the validation of flood inventory points in Assam, the northeastern part of
India. Also, the model performance of our study i.e. 93.5% is lower than
Norallahi and &SeyedKaboli (2021) at 98% and Eini et al. (2020) at
96.76% in Kermanshah City, Iran. The AUC is close to or greater than 0.8,
indicating the accuracy of the MaxEnt model in estimating the spatial
distribution of flood hazards at the province scale based on environ-
mental factors (Mashao et al., 2023).

Nevertheless, the model is helpful and can be used for future flood
susceptibility assessment due to excellent AUC i.e. 80%–90% (Man-
drekar, 2010; Mashao et al., 2023). This study found that the model
performs well for flood susceptibility mapping, with an AUC of 0.935
(Fig. 15). Park (2015) suggested the MaxEnt model as a powerful tech-
nique for managing continuous data, and its amalgamation with classi-
fied information showcases exceptional predictive capabilities. The
significance of environmental factors can be used as a theoretical foun-
dation for examining the risk of flash floods (Li et al., 2022).

5. Conclusion

We employed the MaxEnt machine learning approach to derive flood
susceptibility maps for the Mohana-Khutiya River in Nepal. These maps
not only aided in evaluating the flood susceptibility in each village but
also enabled the identification of factors that significantly influence the
susceptibility to flood in the Mohana-Khutiya River area. Our analysis
revealed that the distance from the river (33.1%) and changes in LULC
(30.3%) were the primary factors influencing flood susceptibility. Sur-
prisingly, annual precipitation had negligible influence on flood sus-
ceptibility within the study area. Based on our results, we identified 20
villages in the high flood susceptible zone, followed by 45 villages in the
moderate susceptible and 105 villages in the low susceptible zone. The
high susceptible zone encompassed approximately 4.9% of the area,
while the moderate-susceptible zone covered 12.75% and the low sus-
ceptible zone covered 82.34%.

The MaxEnt model, employed for spatial flood susceptible modeling
in our study, yielded satisfactory results, as indicated by acceptable AUC
values. Susceptibility mapping is crucial for preparing disaster manage-
ment plans for local government, especially in flood-prone areas. MaxEnt
modeling approach, noted for its cost-effectiveness, simplicity, and low
data requirements, can be a fitting solution for developing countries like
Nepal. By efficiently identifying vulnerable areas, MaxEnt contributes to
proactive disaster planning, ultimately reducing the impact on property
and lives. This study highlights the effectiveness of the MaxEnt model as
a useful approach for academics and policymakers in understanding
flood occurrences and aiding in floodmitigation planning and framework
development.

Our findings also emphasize the importance of considering factors
beyond annual precipitation when assessing flood susceptibility, under-
scoring the necessity for a holistic comprehension of variables such as
distance from the river and LULC change. However, further research is
necessary to strengthen this claim. Future research should focus on
refining the MaxEnt model by incorporating additional variables and
validating it against observed flood events. Additionally, exploring the
integration of other flood modeling approaches or data sources could
augment the precision and resilience of flood susceptible evaluations,
which will be beneficial for developing effective disaster management
plans.
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