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A B S T R A C T   

Climate change is a variation in temperature and precipitation for longer periods due to global warming. It has an 
impact on tree species distribution, composition and diversity of the forests. Our study aims to answer how future 
climate change is likely to have an impact on the vegetation shift of broad-leaved and coniferous forests. The 
study used forest resource assessment data (2010–2014) of Nepal to assess vegetation shift from the perspective 
of climate change scenario. We collected altogether 392 presence points (observations) for broad-leaved forests 
and 99 for coniferous forests. These occurrence points accompanied by bioclimatic variables and topographical 
variables (Elevation, Slope and Aspect) were used as input data in a MaxEnt model to predict the distribution of 
the coniferous and broad-leaved forests. We found a potential area of the near current (1970–2000) coniferous 
forest replaced by a broad-leaved forest under a climate change scenario (SSP2 4.5 for 2041–2060) and vice 
versa. The total projected vegetation shift area of Nepal was found to be approximately 1800 km2 (i.e. over 3 % 
of the total forest area). Out of the total vegetation shift area, almost 90 % percent of the area was found to be 
replaced by broad-leaved forest while the remaining 10 % area was found to be replaced by a coniferous forest. 
The climate change impact has been noticed in the vegetation shift, particularly the presence of broad-leaved 
forest is more dominant. The study provides better insights into the impact of climate change on the existing 
vegetation under the future climate change scenario.   

1. Introduction 

Climate change, a variation in temperature and precipitation re
gimes, persists for a long period (IPCC, 2013). The global average 
temperature has increased by 1.1 ◦C from the period 1850–1900 to 
2011–2020(IPCC, 2023) whereas per decade increase of global warming 
in all the continents has been reported to raise by 0.13 ◦C during the past 
50 years from the period 1948–1998 (Pepin and Seidel, 2005) and the 
rate is supposed to increase by 0.25–0.48 ◦C/decade until 2085 
(Nogués-Bravo et al., 2007). At the country level, Nepal’s warming rate 
is 0.056 ◦C/year, with the highest rate of increase in higher altitudes 
(GoN/MoFE, 2021). The Himalayan region has been reported to have a 
warming rate approximately 3 times higher than the global average (Xu 
et al., 2009). 

Forest ecosystems are sensitive to climate change and experience 
changes such as changes in species abundance, forest types, growth rate, 
structure of forests, tree mortality and tree vitality (Bhatta et al., 2021; 

Gebeyehu, 2019; Heidenreich and Seidel, 2022; Keane et al., 2020; 
Kelly and Goulden, 2008b; Taccoen et al., 2022; Thapa and St. George, 
2019; Trisurat et al., 2009). Climate change has both positive and 
negative impacts on forests. Increase in the growth of conifer forests 
(Wu et al., 2019), an increase in wood production and carbon stock 
(EGGERS et al., 2008), and an increase in species richness (Zhou et al., 
2013) are examples of positive impacts while depletion of the highland 
ecosystem (Manish et al., 2016), habitat shrinkage of medicinal and 
aromatic plants (MAPs)(Shrestha et al., 2022) and threatened conifers 
(Xie et al., 2022), increasing infestation of pest and invasive species 
(Gebeyehu, 2019) are examples of negative impacts. Climate change 
studies in Nepal are focused on invasive alien species (Shrestha et al., 
2018; Shrestha and Shrestha, 2019; Siwakoti et al., 2016), biodiversity 
and ecosystem (Bhattacharjee et al., 2017; Paudel et al., 2021; Thapa 
et al., 2013), medicinal and aromatic plants (Rana et al., 2020; Shrestha 
et al., 2022), freshwater ecosystems (Lamsal et al., 2017; Singh et al., 
2022), human-wildlife- ecosystems interaction (Aryal et al., 2014), and 
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habitat distribution (Baral et al., 2023; Chhetri et al., 2018; Rai et al., 
2022) . 

Climate change is causing an expansion of broad-leaved deciduous 

tree distribution in the boreal forests (Thuiller et al., 2006) suggesting a 
vegetation shift from coniferous-dominated forests towards 
broad-leaved species (Hufnagel and Garamvölgyi, 2014; Lindner et al., 
2010; Xiao-Ying et al., 2013). In contrast, higher-elevation broad-leaved 
forest is invaded by lower-elevation coniferous forest in response to 
climate change (Bai et al., 2011). Both pieces of evidences show a 
vegetation shift due to climate change taking place in both directions (i. 
e. Broad-leaved to coniferous and its reverse). The causes of vegetation 
shift are due to change in the threshold range of the climatic variables, 
particularly, mean annual precipitation (Zhao et al., 2017), change in 
climatic variability, particularly drought accompanied by stand struc
ture and topography (Rigling et al., 2013) and increase in CO2 emission, 
temperature and precipitation (Hufnagel and Garamvölgyi, 2014). 

Climate is considered as a major determinant of forest distribution 
(Kelly and Goulden, 2008a; Lenoir et al., 2010).   In Nepal, the 
broad-leaved forests are more likely to occur in high -rainfall areas, 
whereas coniferous forests are confined to low rainfall areas (Bhatta 
et al., 2021). Presence of broad-leaved forest and coniferous forest under 
different site conditions, it is important to know the potential impact of 
future climate change on the adaptive capacity of natural tree vegetation 
(coniferous and broadleaved forest). Therefore, this study was con
ducted by combining observational data and model-based approach 
options to determine the current potential distribution of broad-leaved 
and coniferous forests and their vegetation shift under future climate 

Fig. 1. Map of Nepal showing the distribution of broad leaved and coniferous forests based on the permanent sample plots of forest resource assess
ment (2010–2014). 

Table 1 
Forest types information of Nepal.  

S. 
N 

Forest types Altitudinal 
range (m) 

Temperature ( ◦C) 
(1970–2000)a 

Precipitation (mm) 
(1970–2000) 

Main dominant tree species Remarks 

1 Coniferous 
forest 

869–3600 − 2.7 – 20.5 351 - 2273 Pinus roxburghii, Pinus wallichiana, Pinus 
patuala 

Conifers represent more than 60 % 
of the basal area (DFRS, 2015) 

2 Broad-leaved 
forest 

88–3587 2.9 – 24.7 388 - 3215 Shorea robusta, Castanopsis indica, Schima 
wallichi, Quercus sps, Rhododendron sps 

Broad-leaved species represent 
more than 60 % basal area  

a Mean annual temperature and Annual precipitation from the period of 1970–2000 accessed from www.worldclim.org on 10 June 2022. 

Table 2 
Environmental variables used in MaxEnt modeling.  

Source Category Variable description Unit 

United States 
Geological Survey 
(USGS) 

Topographic Elev - Elevation m 
Slp - Slope Degree 
Asp – Aspect Degree 

World climate Climatic 
variable 

BIO2 - Mean Diurnal Range 
(Mean of monthly (max temp - 
min temp)) 

◦C 

BIO3 - Isothermality (BIO2/ 
BIO7) (×100) 

◦C 

BIO9 - Mean Temperature of 
Driest Quarter 

◦C 

BIO12 - Annual Precipitation mm 
BIO14 - Precipitation of Driest 
Month 

mm 

BIO15 - Precipitation 
Seasonality (Coefficient of 
Variation) 

mm 

BIO19 - Precipitation of Coldest 
Quarter 

mm  
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change scenarios. The overarching objective of this study was to explore 
how broad-leaved and coniferous forests respond to climate change from 
the perspective of vegetation shift under future climate change sce
narios. The study covers all the forest areas of Nepal and intends to 
improve our understanding of climate change impact on vegetation 
shift. 

2. Methods 

2.1. Study area 

We conducted this study in Nepal - known as a Himalayan country 
(latitude 28.39490N & Longitude 84.12400 E) – that lies between India 
and China with diverse forest types due to its altitudinal and climatic 
variations. Stainton (1972) has identified 35 forest types and further 
grouped them into ten major types1 based on elevation and species. The 
distribution of broad-leaved forests occur from the lower region to high 
mountain region, whereas the coniferous forests are mostly confined to 
the middle mountain and high mountain regions (DFRS, 2015b, DFRS, 
2015a). With the increase in altitude, coniferous forests are replacing 
broad-leaved forests. The distribution of coniferous forest occurs only in 
the altitudinal range of 869 m to 3600 m, whereas broadleaved forest 
occurs throughout the range (Fig. 1). We grouped the forests found in 
this range into two categories, i.e. coniferous forest and broad-leaved 
forest (Table 1). The habitats and characteristics of the major forest 
types within these groups are briefly described below: 

2.2. Modeling and mapping 

We intended to assess spatial distribution and vegetation shift of 
coniferous and broad-leaved forest in the future climate change sce
nario. The potential distribution of the floral and faunal species has been 
done by using Maximum-entrophy (MaxEnt) model in Nepal (Gajurel 
et al., 2014; Mahatara et al., 2021; Rai et al., 2022; Su et al., 2021). The 

MaxEnt model, a machine learning algorithm, has been widely used to 
predict the potential distribution of species [70–72] and also considered 
a highly performant species distribution modeling algorithm (Elith 
et al., 2006; Fyllas et al., 2022; Grimmett et al., 2020). We used this 
model for assessing the potential distribution of the coniferous and 
broad-leaved forests under future climate change scenarios to better 
understand climate change impact on vegetation shift. 

As an input variable for the model, we used presence points (latitude 
and longitude) of the forests, topographic variables and climatic vari
ables (projected) which gives distribution map of the forest along with 
variable response curves in the future climate change scenario as an 
output. The model used known points and predictor variables to esti
mate the probability of presence points throughout the study area. We 
extracted 49 presence points (observations) for coniferous forests and 
392 for broad-leaved forests from the forest resource assessment 
(2010–2014) data of Nepal. In addition, 114 presence points for conif
erous forests were extracted from secondary sources (study reports, 
forest mapping work and visual interpretation) to increase sample points 
in the study. 

We applied a spatial filter of ~1 km x 1 km grid size to maintain at 
least 1 km distance among the presence points for reducing autocorre
lation (Fortin, 1999). Thus, 392 presence points for broad-leaved and 99 
presence points for coniferous points were used in this study. Similarly, 
we downloaded freely available topographical variables (altitude, slope 
and aspect) from United States Geological Survey (USGS)2 and 
pre-processed them in ArcGIS (ESRI, 2017) to prepare in the required 
format (ASCII), extent, and spatial resolution (30 m). 

Moreover, a relatively high resolution of climatic data is appropriate 
for the area with a diverse climate at a short distance. Therefore, 19 
bioclimatic variables (current and projected) were downloaded from 
world climate data3 at 30 ′ (~1 km2). A multicollinearity analysis was 
performed to remove highly correlated variables (r > 0.7) to improve 
the prediction of the model using vifstep function under "usdm" package 
in R program (Naimi et al., 2023) and remaining 7 bioclimatic variables 
(Bio2, Bio3, Bio9, Bio12, Bio14, Bio15 and Bio19) were used for the 
modeling (Table 2). The vifstep function calculates the variance inflation 
factor of a set of predictor variables and excludes highly correlated 
variables through a stepwise procedure. For the prediction of the 

Fig. 2. Flowchart of the methodology used in the MaxEnt modeling and mapping in Arc GIS.  

1 Tropical forest (<1000m), Subtropical broad-leaved forest (1000-2000m), 
Subtropical pine forest (1000-2200m), Lower temperate broad-leaved forest 
(1700-2700m), Lower temperate mixed broad-leaved forest (1700-2200m), 
Upper temperate broad-leaved forest (2200-3000m), Upper temperate mixed 
broad-leaved forest (2500-3500m), Temperate coniferous forest (2000-3500m), 
Sub-alpine forest (3000-4100m), Alpine scrub (>4100m) 

2 www.usgs.gov  
3 www.worldclim.org 
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potential distribution of the broad-leaved and coniferous forests, we 
used 7 projected bioclimatic variables from MIROC6/GCMs (Global 
climate models) model under Shared Socio–economic Pathways (SSP2 
4.5) scenario for the period of 2041 to 2060 (average 2050). 

To run the MaxEnt model in our study, the occurrence points of the 
forests were examined as a response variable while bioclimatic vari
ables, altitude, slope and aspect as the predictor variables. The model is 
also used for predicting the distribution of the species in Nepal (Gajurel 
et al., 2014; Mahatara et al., 2021; Rai et al., 2022; Su et al., 2021). We 
used 10 replicates (ran the model 10 times) and 1000 background points 
(points that represent environments or features of the study area) in the 
model for the prediction (Barbet-Massin et al., 2012) in our study. 

The distributions of coniferous and broad-leaved forests in the near 
current period (1970–2000) and future climate change scenarios 
(2041–2060) were identified by the MaxEnt software and for further 
analysis (change in area and spatial distribution) and mapping Arc GIS 
software was used. We followed steps of building model, its validation 
and finally preparing map as an output (Fig. 2). 

2.3. Accuracy assessment of the models 

Accuracy assessment is an important step in the process of devel
oping models that helps validate and evaluate the performance of the 
model. The 70 % of the occurrence points of broad-leaved and conif
erous forests were allocated for the training dataset to develop the 
models. The remaining 30 % occurrence points were allocated for 
validating the models. We used two methods to evaluate namely Area 
under the receiver-operator curve (AUC) which is threshold indepen
dent, and True Skill Statistics (TSS) which is threshold dependent. The 
AUC of models was obtained directly from the model (Phillips et al., 
2006; Wiley et al., 2003). Its value, i.e. <0.7, 0.7–0.9 and >0.9, denotes 
poor model performance, moderately useful model performance, and 
excellent model performance respectively (Pearce and Ferrier, 2000). 
Although AUC is a classical and widely used model evaluation param
eter, it is criticized by researchers (Lobo et al., 2008). Therefore, in 
addition, TSS was calculated for the model evaluation (Merow et al., 
2013). The value of TSS ranges from -1 to 1, where a value < 0 indicates 

Fig. 3. A Jackknife test of variable importance (regularized training gain) for modeling broad-leaved (a) and coniferous (b) forest distribution based on ten pre
dictor variables. 
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a performance no better than random and 1 indicates a perfect fit of the 
model (Allouche et al., 2006). TSS was calculated for all model outputs 
(10 replications), and the final TSS was the average of all 10 replications 
for coniferous and broad-leaved forests. 

3. Results 

3.1. Model performance and contribution of predictor variables in the 
model 

The MaxEnt model used in our study shows a better distribution of 
the coniferous forest at near current period (1970–2000) and in the 
future climate change scenario (2041–2060) than broad-leaved forests. 
The AUC and TSS of the model for coniferous forests was found to be 
0.840 and 0.551 respectively, while for the broad-leaved forests it was 
0.698 and 0.311 respectively. According to the relative percent contri
bution (gain in model when variable is added) of the ten predictor 
variables, annual precipitation (Bio12) and elevation were the most 
influential variables in the distribution of both broad-leaved and 
coniferous forests (Annex1). 

Similarly, Fig. 3 shows the variables contribution to the model based 
on the Jackknife test. The Jackknife test reveals the contribution of the 
predictor variables on shuffling randomly to observe the effect on the 

model accuracy (permutation-based importance). Elevation, Mean 
Temperature of Driest Quarter (Bio9) and Annual precipitation (Bio12) 
were predictor variables for the distribution of both coniferous and 
broad-leaved forests while Precipitation Seasonality (Bio15) for broad- 
leaved forest and Precipitation of Driest Month (Bio14) for coniferous 
forests. 

The result shows that all the predictor variables contributed to the 
gain of the model. The highest gain of the model by the predictor vari
able was the "elevation" in both the forests types. It means that when 
elevation is omitted, it decreases the gain most in the model (Fig. 3). 

3.2. Variables response curve 

The variable response curves of the ten influential variables for the 
distribution of broad-leaved and coniferous forests are shown in Figs. 4 
and 5, respectively. These curves depict how a specific variable responds 
in the occurrence of the species, while other variables remain un
changed. A response curve with one predictor variable shows the 
optimal environmental condition that represents the distribution of both 
forests. The optimal range for example of Annual precipitation (Bio12) i. 
e.1000–2000 mm, elevation i.e. <1000 m and 2000–3000 m, Mean 
Diurnal Range (Bio2) –i.e. 8–9 ◦C was found for the distribution of 
broad-leaved forests (Fig. 4) whereas the optimal range of Annual 

Fig. 4. Response curve of seven bioclimatic and three topographic predictor variables for the distribution of broad-leaved forests. X –axis represents predictor 
variables, Y- axis represents occurrence probability. Red line represents mean of occurrence probabilities of a predictor variable whereas blue color represents a range 
of occurrence probability of the predictor variable. 
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precipitation (Bio12) i.e.250–750 mm, Elevation i.e. 1000–2000 m and 
Mean Diurnal Range (Bio2) i.e. 12–14.5 ◦C was found for coniferous 
forests (Fig. 5) 

3.3. Distribution of broad-leaved and coniferous forests 

The current distribution of the broad-leaved forests and their future 
distribution under the climate change scenario (2041–2060) show that 
these forests are likely to occupy most of the area of Nepal (Fig. 6) in the 
upcoming decades. In the near current period, the potential distribution 
of the broad-leaved forests was found to be approximately 90,000 km2, 
while its distribution increased by 912 km2 in the future climate change 
scenario (Table 4). The result shows that the distribution of broad- 
leaved forests was found to shift 77 m upwards in higher altitudes (i.e. 
3767 m to 3844 m altitude) while no lower shift from the lowest altitude 
in the future climate change scenario (Table 5). 

The distribution of the coniferous forest under the future climate 
change scenario forests is likely to decrease (Fig. 7). In the near current 
period, total potential area of the coniferous forest was found to be 
43,075.3 km2 while the area is likely to decrease by 18,020.4 km2 in the 
future climate change scenario (Table 3). The result shows that the 

distribution of coniferous forests was found to shift 54 m lower at the 
higher altitude (i.e. 4928 m to 4874 m) whereas 214 m higher at lower 
altitude (i.e. 796 m to 1010 m) in the future climate change scenario 
(Table 4). Potential area of the coniferous forests distributed in the lower 
region is likely to decrease more than the higher region in the future 
climate change scenario (Fig. 7b). It shows that climate change in
fluences habitat shrinkage of coniferous forests occurring in the lower 
and higher elevation. 

3.4. Climate change impact on vegetation shift 

We found an area of coniferous forests near the current period would 
be shifted into a broad- leaved forest under the climate change scenario 
and vice versa. The total vegetation shift area was found to be 1810 km2 

which is more than 3 % of the total forest area of Nepal (Table 5). Out of 
the total vegetation shift area, almost 90 % percent of the shifted area 
would be occupied by broad-leaved forests replacing coniferous forests 
while the remaining 10 % of the area would be occupied by coniferous 
forests replacing broad-leaved forests (Fig. 8). The vegetation shift of 
coniferous forests into broad-leaved forests is more dominant than the 
broad-leaved into coniferous forests under future climate change 

Fig. 5. Response curve of seven bioclimatic and three topographic predictor variables for the distribution of coniferous forests. X –axis represents predictor variables, 
Y- axis represents occurrence probability. Red line represents mean of occurrence probabilities of a predictor variable whereas blue color represents a range of 
occurrence probability of the predictor variable. 
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scenarios. The result shows that climate change is likely to cause a 
vegetation shift in the future. 

4. Discussion 

The result shows that coniferous forests are more likely to shift into 
broad-leaved forest in the future (Fig. 8a), supporting the hypothesis of 
climate change impact on the vegetation shift, i.e. one vegetation into 
another In agreement with our study of coniferous forests, (Fyllas et al., 
2022) reports that climate change leads to potential habitat shrinkage of 
the species in the higher elevation. Previous studies also reported the 
impact of climate change on species composition (Feeley et al., 2011), 
the upward shift of species (Li et al., 2020; Parmesan and Yohe, 2003), 
and increasing/decreasing species richness (Adhikari et al., 2018; Zhou 
et al., 2013). Moreover, human disturbance (i.e., tree harvest) contrib
utes to future species distribution along with climate change (Wang 
et al., 2019). 

The distribution of the broad-leaved forest and the coniferous forest 
is largely determined by annual precipitation (Bio12) and elevation. 
Elevation and the annual mean temperature (Bio1) are highly correlated 
and thus elevation can be used as a proxy for climatic variables 
(Hanawalt and Wittaker, 1976; Malla et al., 2022). Climatic variability is 
considered a major driver of vegetation shift. The findings of vegetation 
shift (broad-leaved to coniferous or vice versa) due to climate change in 
our study are supported by other studies (Hiura et al., 2019; Rigling 
et al., 2013; Tian and Fu, 2020). Climatic variables (Temperature and 
precipitation) are important factors in tree and forest growth (Toledo 
et al., 2011) However, seasonal temperature and precipitation deter
mine the growth of a tree which is species-specific (Gauli et al., 2022) 
showing that different tree species respond differently with the changing 
climate. Forests are sensitive to climate change, thus the spatial distri
bution of broad-leaved forest and coniferous forest has increased over 
the past 3 decades but at a different rate (Tian and Fu, 2020) 

The spatial distribution of broad-leaved and coniferous forests is 

Fig. 6. Potential distribution of the broad-leaved forest at near current (a) and in the future (b).  
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different in Nepal. The broad-leaved forests occupy most of the area of 
the forests compared to coniferous forests. Further, the coniferous for
ests are confined to the low precipitation area while the broad-leaved 
forest receives high precipitation (Bhatta et al., 2021) which shows 
that low precipitation favors coniferous forests more than the 
broad-leaved forest. In the future climate change scenario (SSP2 4.5 
scenario for 2041–2060), the amount of precipitation increases (from 
1351.69 mm at the near current to 1418.88 mm in 2041–2060) which 

could lead to an increased spatial distribution of the broad-leaved forest. 
Particularly, human-induced global warming acts as a driving factor to 
increase the frequency, intensity and amount of precipitation (IPCC, 
2018) 

Fig. 7. Potential current (a) and future (b) distribution of coniferous forest.  

Table 3 
Change of forests area under climate change scenario (2041–2060).  

SN Forests Suitable areas (km2) Change (km2) 

Near current Future 

1 Broad-leaved 89,667.09 90,579.17 912.08 
2 Coniferous 43,075.3 25,054.9 -18,020.4  

Table 4 
Potential distribution of broad-leaved and coniferous forest at near current 
(1970–2000) and in the future climate change scenario (2041–2060) with 
varying altitudinal ranges.  

Forest Current elevation (m) Future elevation (m) 

Min Mean Max Min Mean Max 

Pine 796 2836.93 
(1056.58) 

4928 1010 2774.67 
(933.37) 

4874 

Broad- 
leaved 

117 1804.32 
(976.61) 

3767 117 1841.91 
(997.23) 

3844 

Note: Standard deviation shown in parenthesis. 
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Similarly, the temperature increase in future climate change sce
narios (from 14.05 ◦C at the near current to 15.47 ◦C in 2041–2060) is 
supposed to favor the expansion of broad-leaved forests. The emission of 
greenhouse gases due to anthropogenic activities such as burning fossil 
fuel and forest fires are the main reason to increase global temperature 
(IPCC, 2018). The lower regions of Nepal are covered mostly with 
broad-leaved forests (Fig. 6a). Particularly, the increase in temperature 
is more pronounced in higher altitudes of Nepal (GoN/MoFE, 2021) 

which supports our findings in the future scenarios, i.e. the upward shift 
of broad-leaved forests. The change in vegetation shift and geographical 
distribution may have several possible reasons, but more specifically, it 
is due to climate change (Parmesan and Yohe, 2003). 

The projected vegetation shift in the future climate change scenario 
will have implications on forest dynamics and the livelihoods of the 
coniferous forests dependent people. An increasing area of broad-leaved 
forest in the future climate change scenario leads to an increase in 
species diversity (Joshi et al., 2022) and an increase in soil organic 
carbon (Chiti et al., 2012; Joshi et al., 2022) which helps make these 
forests climate resilient. On the other hand, people dependent on the 
coniferous forests are likely to be more vulnerable. 

Moreover, the MaxEnt model predicts potential distribution of 
existing vegetation in the study area based on the input data. Potential 
area of a particular foret vegetation given by the MaxEnt model does not 
mean that the vegetation exists there but there might be other vegeta
tion or biomes at present. The existing and potential areas of the 

Table 5 
Vegetation shift (broad-leaved to coniferous forest and its reverse) in climate 
change scenario (SSP2 4.5 for 2041–2060.  

S.N Vegetation shift Area (km2) Percentage 

1 Coniferous forests into Broad-leaved forests 1578.82 87.19 
2 Broad-leaved forests into Coniferous forests 231.90 12.81  

Total 1810.72 100  

Fig. 8. Vegetation shift from coniferous into broad-leaved (a) and Vegetation shift from broad-leaved into coniferous (b) under climate change scenario.  
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particular vegetation under study share common environmental condi
tions which is a basis to predict species distribution. However, negative 
impact of climate change, such as increased number of fire incidences 
(Mishra et al., 2023), invasive alien plant species (Shrestha et al., 2018; 
Shrestha and Shrestha, 2019) and forest pests outbreaks (Pureswaran 
et al., 2018) accompanied by human disturbances may hinder the 
vegetation shift differently than the speculation of this study. This study 
does not provide information on how the transition of forests takes place 
during the entire process and how climate-induced severe events (forest 
fire, forest pests/disease, and invasive alien species) and human dis
turbances affect the vegetation shift process. Depending on the time 
course of climate change, vegetation shift can occur either abruptly 
through large-scale mortality events or gently through gradual changes 
in species abundance. The support of adaptation processes by human 
intervention must take into account site changes and corresponding 
changes in potential natural tree vegetation. Especially with the onset of 
reduced tree vitality and tree mortality, measures for the conservation of 
current trees or restoration of past species abundances should be criti
cally evaluated based on future potential natural tree species vegetation. 
Further study on vegetation shift requires climate-induced severe events 
and human disturbances along with climatic variables for a better un
derstanding the vegetation shift process under climate change scenarios. 

5. Conclusion 

Climate change in the future scenario shows its impact on the 
vegetation shift of broad-leaved forests to coniferous forests and vice- 
versa. However, the vegetation shift from coniferous forest to broad- 
leaved forest is seen as more dominant. The impact of climate change 
is not only limited to the area of forest change but is also seen in the 
altitudinal shift of the newly formed forests. As a result of vegetation 
shift, it may affect the accumulation of soil organic carbon (SOC), spe
cies diversity, and climate resilient capacity of the forest. Vegetation 
shift to broad-leaved forests under climate change scenario could benefit 
in terms of maintaining species diversity, and providing multiple-use 
products and eco-system services. Similarly, vegetation shift from 

coniferous to broad-leaved forest may negatively affect the coniferous 
forest dependent local people and forest based enterprises by losing the 
benefits from the forests in the future. 
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Annex1 

Relative percent contribution of the predictor variables in the MaxEnt model.   

S.N Variable Abbreviation Relative percent contribution 
Broad-leaved forest Coniferous forest 

1 Annual Precipitation Bio12 62.3 16.9 
2 Elevation Elev 26.5 55.1 
3 Precipitation Seasonality (Coefficient of Variation) Bio15 2.6 2.1 
4 Mean Diurnal Range (Mean of monthly (max temp - min temp)) Bio2 2.5 9.2 
5 Slope Slp 1.9 5.4 
6 Precipitation of Coldest Quarter Bio19 1.8 4.9 
7 Aspect Asp 1.2 2.8 
8 Isothermality (BIO2/BIO7) (× 100) Bio3 0.8 1 
9 Mean Temperature of Driest Quarter Bio9 0.3 1.9 
10 Precipitation of Driest Month Bio14 0.2 0.7  
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V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, and T. W. Moufouma- 
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