

THREE DECADES
FOR MOUNTAINS AND PEOPLE

Glacier Status in Nepal and Decadal Change from 1980 to 2010 Based on Landsat Data

Glacier Status in Nepal and Decadal Change from 1980 to 2010 Based on Landsat Data

Samjwal Ratna Bajracharya, International Centre for Integrated Mountain Development
Sudan Bikash Maharjan, International Centre for Integrated Mountain Development
Finu Shrestha, International Centre for Integrated Mountain Development
Om Ratna Bajracharya, formerly Department of Hydrology and Meteorology (DHM), Nepal
Sarju Baidya, Department of Hydrology and Meteorology (DHM), Nepal

Copyright © 2014

International Centre for Integrated Mountain Development (ICIMOD)
All rights reserved, Published 2014

Published by

International Centre for Integrated Mountain Development, GPO Box 3226, Kathmandu, Nepal

ISBN 978 92 9115 311 4 (printed) 978 92 9115 312 1 (electronic)

Library of Congress Control Number 2014–347283

Production team

A. Beatrice Murray (Consultant editor) Amy Sellmyer (Editor) Dharma R Maharjan (Graphic designer) Asha Kaji Thaku (Editorial assistance)

Photos: pg - i, 6, 28, 43, 44, 61 Samjwal Bajracharya; pg - ii, 11, 12 Sharad Joshi

Printed and bound in Nepal by

Quality Printers Pvt. Ltd., Kathmandu, Nepal

Reproduction

This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. ICIMOD would appreciate receiving a copy of any publication that uses this publication as a source.

No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from ICIMOD.

Note

The views and interpretations in this publication are those of the author(s). They are not attributable to ICIMOD and do not imply the expression of any opinion concerning the legal status of any country, territory, city or area of its authorities, or concerning the delimitation of its frontiers or boundaries, or the endorsement of any product.

This publication is available in electronic form at www.icimod.org/himaldoc

Citation: Bajracharya, SR; Maharjan, SB; Shrestha, F; Bajracharya, OR; Baidya, S (2014) *Glacier status in Nepal and decadal change from 1980 to 2010 based on landsat data.* Kathmandu: ICIMOD

Contents

For	eword by the Director General of ICIMOD	Vi
For	eword by the Director General of the Department of Hydrology and Meteorology of Nepal	vii
	knowledgements	viii
	ronyms and Abbreviations	i×
Exe	ecutive Summary	X
1	Introduction	1
	Glacier Inventories of the Hindu Kush Himalayan Region Glaciers and Glacial Lakes in Nepal River Basins and Sub-basins in Nepal About This Report	1 4 4 5
2	Methodology – Data Collection and Glacier Mapping	7
	Introduction Data Collection and Preparation Glacier Mapping and Volume Estimation	7 7 8
3	The Status of Glaciers in Nepal in 2010	13
	Status of Glaciers in Nepal Status of Glaciers in the Individual River Basins Discussion	13 19 28
4	Decadal Glacier Change from 1980 to 2010 in the Nepal Himalayas	29
	Decadal Glacier Change in Nepal Decadal Glacier Changes in the Individual River Basins Discussion	29 33 43
5	Case Study: Climate Change Impact on Glaciers in the Langtang and Imja Sub-basins	45
	Introduction Study Area Glacier Change Climate Discussion	45 45 45 50 56
6	Conclusion	59
	Glacier Status in 2010 and Trends Over Time Conclusions Recommendations Future Outlook	59 59 60 61
Re	ferences	62
Ar	inexes	65
Anı	nex 1: Landsat images used in the inventory nex 2: Detailed Tables nex 3: Elevation, aspect and slope of glaciers in the sub-basins (2010)	65 67 86

Foreword

I am pleased to present this report on the status of glaciers in Nepal and the decadal change since 1980. The study represents a major advance on ICIMOD's first publication on the glaciers of Nepal in 2001 and complements the basin-wise description of basins in the Himalayan region published in 2011. Use of the remote sensing images that are now available has enabled the preparation of a comprehensive assessment of the status of Nepal's glaciers in 2010 and the changes since approximately 1980, 1990, 2000, and 2010. A small case study in the Langtang and Imja sub-basins provided a more detailed snapshot view of the changes in individual glaciers and small sub-basins and the possible parallels with changes in average temperatures over the past two decades.

The Himalayan region contains some of the most dynamic, fragile and complex mountain ranges in the world. These magnificent mountain ranges play an important role in global atmospheric circulation, the hydrological cycle, and water resources availability, provide a wide range of ecosystem services, and are a source of many hazards. Mountain areas are particularly vulnerable to climate change, and Nepal's Himalayan mountains are no exception. A number of noticeable impacts related to climate change have already been documented.

The high Himalayan region contains solid freshwater reserves in the form of snow and glaciers that benefit both the mountain people and the downstream riparian areas. However, these glaciers are showing signs of shrinking, thinning, and retreating. Among others, this is leading to the formation and expansion of glacial lakes, which could lead to an increase in the number of glacial lake outburst floods (GLOFs). If the present trends persist, the glacier ice mass will gradually be reduced, which will impact on the availability of water resources as well as glacial hazards. Climate and glacier changes cannot be generalized across the region, however; and the consequences of any change for glaciological hazards and water resources are complex and thus difficult to predict. The general trend appears to be one of glacial retreat, as in many mountain areas in the world, but observations of individual glaciers indicate that the annual retreat rates vary from basin to basin. In some cases the rate has doubled in recent years compared to the early seventies. Notwithstanding the importance of the cryosphere, there is a lack of data on the snow and glacial resources of these mountains, and especially of the long-term information on glaciers required for a credible scientific assessment. Glacier inventories have been compiled for some parts of the region using different approaches, but there has been no comprehensive coordinated assessment. A long term consistent glacier database is needed to support assessments of glacier status across the region and understanding of climate change impacts on glaciers, as well as for climate and hydrological monitoring.

ICIMOD has been working with partner institutes in the region to build a regional database of HKH glaciers since the late 1990s, and prepared an inventory of the status of glaciers in the major river basins of the Hindu Kush Himalayan region in 2011. The data will be very useful as a basis for modelling studies of future water availability. For Nepal, however, it is important for future planning to have detailed information on the glaciers within the country boundary. This publication aims to meet this need, with a detailed account of glacier status in 2010 and changes over the past thirty years. The decadal glacier trends will help in understanding the scenario for future water availability and glacial hazards.

We particularly thank the Royal Norwegian Embassy, Kathmandu for its financial support for the HKH Cryosphere Monitoring Project and the inspiration provided during this work, as well as HIMALA and SERVIR Himalaya of NASA and USAID who provided additional support. We are especially pleased that the project has enabled us to further strengthen our collaboration and cooperation with national partners. I would like to express my thanks and appreciation to the ICIMOD colleagues and national partners for their efforts in undertaking this comprehensive and painstaking study. I am confident that the information contained in this publication and presewnted on ICIMOD's online Mountian GeoPortal will be a useful resource for the country, as well as for scientists worldwide studying the processes, potential impact, and implications of climate change.

David MoldenDirector General
ICIMOD

In Mals

Foreword

The Department of Hydrology and Meteorology (DHM) of Nepal initiated organized hydrological and meteorological activities in 1962. Since then, it has installed meteorological stations across the country for continuous monitoring of temperature and precipitation, including in the higher mountain regions. DHM has also been working in glaciology for many years, with a recent focus on the monitoring and mitigation of glacial lakes, and collaborating with and supported by ICIMOD and other agencies.

Glaciers have been thinning and retreating in many parts of the world. Changes in glaciers provide some of the clearest evidence for climate change, and glacier shrinkage, and in some cases disappearance, indicates the speed of the present change on a global scale. These changes have implications locally and regionally for water resources, and globally for sea level rise. The associated increase in regional and local hazards is also increasing risk for communities. In view of this, extensive efforts have been made internationally to improve our understanding of the ongoing changes in glaciers and the pattern of global warming, as well as projecting future scenarios using global and regional climate models.

In Nepal, detailed study and monitoring of glaciers started after a catastrophic glacial lake outburst flood (GLOF) event in 1985. DHM collaborated closely with ICIMOD in the preparation of the first inventory of glaciers, glacial lakes, and glacial lake outburst floods in Nepal, published in 2001, and the two organizations have continued to work together closely since then in the field of glaciology. DHM was pleased to provide technical and advisory support for the preparation of the present updated inventory, which provides an overview of the current status of Nepal's glaciers as well as the changes over the preceding decades based on an analysis of satellite images. The datasets will provide an important basis to the scientific community in formulating further research needs.

We thank ICIMOD for the opportunity to work on and contribute to this publication, and I sincerely thank the many DHM colleagues for their generous support and involvement during the preparation. We are confident that our collaboration will continue to strengthen following this project.

Dr Rishi Ram Sharma

Director General

Department of Hydrology and Meteorology Ministry of Science, Technology and Environment Babarmahal, Kathmandu

Acknowledgements

We thank Ms Sarina Lama of ICIMOD and Mr Wu Lizong, visiting scientist at ICIMOD from the Cold and Arid Region Environmental and Engineering Research Institute (CAREERI) of the Chinese Academy of Sciences (CAS), for their assistance during the initial stages of glacier mapping and monitoring of the Nepal Himalayas; Mr Kiran Shankar Yogacharya, former Director General of the Department of Hydrology and Meteorology (DHM), Government of Nepal, and Mr Ashim Bajracharya of the Institute of Engineering (IOE), Tribhuvan University, Nepal, for their assistance and support in the climate data analysis for the Langtang and Khumbu regions; and Mr Gauri Shankar Dangol and Mr Dharma Ratna Maharjan of ICIMOD for their untiring support in the preparation of graphics, figures, and tables.

Our special thanks go to Professor Jeffrey Kargel of the Department of Hydrology and Water Resources, University of Arizona, USA, Dr Anil Kulkarni of the Divecha Center for Climate Change, Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, India, Dr Joseph Shea and Dr Arun Shrestha of ICIMOD, and an anonymous reviewer for reviewing this report and providing valuable comments and suggestions, which resulted in considerable improvement of the manuscript.

We thank Mr Pradeep Mool of ICIMOD for his encouragement to undertake the crucial task of investigating the status and decadal change of the glaciers in the Nepal Himalayas, and Mr Basanta Shrestha, and Dr Manchiraju Sri Ramachandra Murthy for their indispensable support in undertaking the project.

We also wish to express our gratitude to all the officials and staff members who helped contributed to the Cryosphere Monitoring Project supported by the Norwegian Ministry of Foreign Affairs. The present study was partially supported by the HIMALA project of the United States Agency for International Development (USAID)/Office of US Foreign Disaster Assistance (OFDA), and the National Aeronautics and Space Administration (NASA) and SERVIR-Himalaya initiative of USAID and NASA. Landsat data were provided courtesy of NASA and the United States Geological Survey (USGS). The Shuttle Radar Topography Mission (SRTM) elevation model version was provided courtesy of NASA's Jet Propulsion Laboratory and further processed by the Consultative Group for International Agriculture Research (CGIAR).

Last but not least we wish to take this opportunity to express our gratitude to our immediate colleagues in the Geospatial Solutions, MENRIS, and Cryosphere Initiative groups for their support, strength, and cooperation which played an essential role in the successful completion of this work.

Acronyms and Abbreviations

ASTER	Advanced Spaceborne Thermal Emission	masl	metres above sea level
	and Reflection Radiometer	MSS	multi spectral scanner (Landsat)
CGIAR	Consultative Group for International	NASA	National Aeronautics and Space
	Agricultural Research		Administration
CI	clean-ice	NDSI	normalized difference snow index
CV	coefficient of variation	NDVI	normalized difference vegetative index
DC	debris cover	NEA	Nepal Electricity Authority
DEM	digital elevation model	OBIC	object based image classification
DHM	Department of Hydrology and Meteorology	OFDA	Office of U.S. Foreign Disaster Assistance
ELA	equilibrium line altitude	RGB	red green blue
ENVI	environment for visualizing images	RMSE	root mean square error
ERTS	Earth Resources Technology Satellite	SD	standard deviation
ETM	enhanced thematic mapper	SLC	scan line corrector
FCC	false colour composite	SPOT	Système Probatoire d'Observation de la
GEN	Japanese Glaciological Expedition to Nepal		Terre /Satellite Pour l'Observation de la
GIS	geographic information system		Terre
GLIMS	Global Land Ice Measurements from Space	SRTM	Shuttle Radar Topography Mission
GLOF	glacial lake outburst flood	TM	thematic mapper (Landsat)
HKH	Hindu Kush Himalayas	TTS	Temporary Technical Secretary
ICIMOD	International Centre for Integrated Mountain	US	United States
	Development	USAID	United States Agency for International
ID	identity		Development
IDL	interactive data language	USGS	United States Geological Survey
IPCC	Intergovernmental Panel for Climate	UTM	universal transverse mercator
	Change	WECS	Water and Energy Commission Secretariat
Landsat	land resources satellite	WGI	World Glacier Inventory
LIGG	Lanzhou Institute of Glaciology and	WGMS	World Glacier Monitoring Service
	Geocryology	WGS	World Geographic System
LWM	land and water mask	WMO	World Meteorological Organization

Executive Summary

This report provides a comprehensive account of the status of glaciers of Nepal in approximately 1980, 1990, 2000, and 2010 based on a semi-automatic standardized analysis of satellite images with post-processing database management in ArcGIS. The methodology is an improved version of methods developed by global initiatives like the World Glacier Monitoring Service (WGMS), Global Land Ice Measurement from Space (GLIMS), and GlobGlacier. The customized methodology of semi-automatic glacier mapping provides a rapid delivery of glacier attributes. The semi-automatically derived glacier outlines from 2010 were overlain separately on the images used to approximate 1980, 1990, and 2000, and the glacier outlines were modified manually for the respective years and used for change analysis. Clean-ice and debris-covered glaciers were mapped separately for 2010 to support studies of water resources assessment and climate change impact. In an additional case study, glacier outlines for the four decades in the Langtang sub-basin in central Nepal and Imja sub-basin in eastern Nepal were analysed and compared with decadal temperature change.

The inventory is a much-needed follow up to the inventory of glaciers and glacial lakes in Nepal published in 2001, which used a variety of data sources with considerable temporal differences, including Indian Survey topographic maps (1962-1975), aerial photos (1957-1959), and field survey findings, and must thus be considered essentially as indicative. The present single country inventory complements the survey published in 2011 of glaciers in the individual river basins of the Hindu Kush Himalayan region, which was based on data from a single source (Landsat images) with a short temporal range (2005 ± 3 years) and also analysed semi-automatically.

The inventory for Nepal was supplemented by a case study in Langtang valley in central Nepal and Imja valley in eastern Nepal showing the changes over 30 years in individual glaciers. The changes were compared with the changes in temperature recorded at nearby hydrometeorological stations; the loss of glacier area was paralleled by a steady increase in average annual temperature, and especially average minimum temperature. Changes in rainfall patterns over 20 years were also analysed.

The results provide information on the change in glacial extent over the past decade and quantitative data to support discussion of climate change impacts in the Nepal Himalayas. The major findings were as follows:

In 2010, a total of 3,808 glaciers were identified with a total area of 3,902 km² and estimated ice reserves of 312 km³. The average area of individual glaciers was 1 km². The Ngojumba glacier in the Dudh Koshi sub-basin was the largest single glacier with an area of 79 km².

About 90% of the glacier area lay between 4,500 and 6,500 masl; with 65% between 5,000 and 6,000 masl.

The contribution of estimated ice reserves is higher for a large glacier than for the same cumulative area from a number of smaller ones. Thus the estimated ice reserves were higher in basins with larger glaciers and larger glaciers are the most important reserves of freshwater.

The total glacier area decreased by 24% between 1977 and 2010, and the estimated ice reserves by 29% (129 km³). The number of glaciers increased by 11%, a result of fragmentation following shrinkage. The lowest losses of glacier area (and in some cases gains) were observed from glaciers with a north or northwest aspect (of which there were very few) and slopes of less than 20°. Mountain basin type and valley glaciers also showed a lower proportional loss of area.

The glaciers receded on average by 38 km² per year.

The rate of loss of glacial area between \sim 1980 and 1990 was almost twice that in the subsequent two decades (1990–2000 and 2000–2010). Further study is needed to determine whether this reflects a slowing in the rate of change or an anomalous situation in the first period.

The average annual mean temperature in the Langtang and Imja (Khumbu) sub-basins rose at an average rate of 0.12°C/year and 0.09°C/year, respectively, between 1988 and 2008. Moving average analysis showed that the rate of increase in average mean minimum temperature was significant and higher than the increase in average mean maximum temperature.

1 Introduction

Glaciers are natural renewable solid reserves of freshwater. They are sensitive to changes in temperature and considered to be one of the best indicators of climate variation. Glacier meltwater contributes to river flow, and in the central and eastern part of the Himalayan region people living downstream benefit especially from glacier meltwater during the pre-monsoon dry season. Overall, the meltwater from snow and glaciers contributes about 10% of the annual stream flow in Nepal (DHM 2008).

Mountain areas are particularly vulnerable to climate change, and the Nepal Himalayas are no exception. The average annual temperature in the Nepal Himalayas between 1971 and 1994 increased by between 0.15 and 0.6°C per decade (Shrestha et al. 1999), which is two to eight times higher than the global mean warming of 0.74°C over the last 100 years (IPCC 2001a, b). Warming can affect the glacier distribution and seasonal snow cover spatially and temporally both by increasing the melting rate and by reducing snowfall in favour of rain. The lack of appropriate glacier data in Nepal has prevented a comprehensive assessment of current glacier mass balance and of any change. In recent years, however, people in the high mountain regions of Nepal have noticed that the snow line is receding and that glacial lakes are growing at the termini as glaciers retreat (Fushimi et al. 1985). These changes are thought to result from global climate change, and in particular rising temperatures.

Globally, 11 of the 12 years from 1995–2006 ranked among the 12 warmest years in the instrumental record of global surface temperature since 1850. The temperature increase is widespread over the globe and is greater at higher northern latitudes (IPCC 2007). The third assessment report of the Intergovernmental Panel for Climate Change (IPCC 2001b) indicated a projected warming in the Asian region of 3.0°C by 2100. These changes cannot be generalized across the region, and the implications for glaciological hazard events and changes in water resources are difficult to predict (ICIMOD 2011). However, the changes could have large effects on Himalayan glaciers with the retreat of the glaciated areas and an increase in the area of glacial lakes. The annual retreat rates that have been observed vary from basin to basin; in some cases the rate has doubled in recent years compared to the early seventies (Bajracharya et al. 2007). Glacier retreat can lead to variations in river runoff, with an initial increase in discharge as a result of the higher rate of melting, followed by a decrease as the ice mass is depleted. It can also lead to the formation and expansion of glacial lakes with increased risks of glacial lake outburst floods (GLOF).

A study on the rate of glacier retreat in the major mountain systems of the world showed that the glaciers in the Himalayan region were retreating at a rate of 0.3 to 1 m per year, the highest among all regions (Dyurgerov and Meier 2005). In order to understand these changes and project future scenarios, it is necessary to know the present status of glaciers and have an indication of the extent and rate of ongoing change. This report describes an assessment of the status and recent rates of change of the glaciers in Nepal.

Glacier Inventories of the Hindu Kush Himalayan Region

The Hindu Kush Himalayan region (HKH) has the largest concentration of snow and glaciers outside the polar regions (Kulkarni 1991, 1994). Notwithstanding this, there is a marked lack of information and data on the snow and glacial resources of these mountains, and especially of the long-term data required for scientific assessment, with only sporadic reports before 2000. A first attempt was made by ICIMOD and its partner institutions to map the glaciers of Nepal, Bhutan, Pakistan, some selected basins in India, and the Ganges basin in China between 1999 and 2004 (Mool et al. 2001a, 2001b; ICIMOD 2005). A new report released in December 2011 by ICIMOD offered the first consistent and comprehensive account of the glacier coverage of the entire Hindu Kush Himalayan (HKH) region based on the river basins (Figure 1.1) (Bajracharya and Shrestha 2011). Although Nepal's glaciers were included in the inventory, they were not collated on a country basis.

The 2011 inventory was based on analysis of Landsat satellite images from 2005±3 years. It identified 54,252 glaciers in the HKH region with a total area of 60,054 km² and estimated ice reserves of 6,127 km³ (Table 1.1); 1.4% of the total area of the HKH region was found to be glaciated. Significant glaciated areas were identified in the Indus, Ganges, Brahmaputra, and Tibetan Interior basins; one-third of the total was mapped in the Indus basin

A mu Darya

A mu Darya

A mu Darya

Ganges

Ganges

Basin boundary

Figure 1.1: Distribution of glaciers in the major river basins of the Hindu Kush Himalayan (HKH) region

Source: Bajracharya and Shrestha 2011

HKH boundary

(Figure 1.2). Very few glaciers were mapped from the Irrawaddy, Mekong, and Yellow River basins. About 62% of the glaciated area was at an elevation 5,000–6,000 masl (Figure 1.3).

The 2011 report and database represented a significant first step in filling the information gap on the glaciers of the HKH region. The database is expected to support regional level assessments and the development of strategies and policies in the context of climate change. It will also contribute to increased understanding of the impacts of climate change on glaciers and the implications for mountain ecosystems and water availability downstream.

Table 1.1: Glaciers and glaciated area in the major basins of the Hindu Kush Himalayan region

Basins	Glacier number	Glacier area (km²)	Estimated ice reserves (km³)	Average area per glacier (km²)
Amu Darya	3,277	2,566	162.6	0.78
Indus	18,495	21,193	2,696.1	1.15
Ganges	7,963	9,012	<i>7</i> 93.5	1.13
Brahmaputra	11,497	14,020	1,302.6	1.22
Irrawaddy	133	35	1.3	0.27
Salween	2,113	1,352	87.7	0.64
Mekong	482	235	10.7	0.49
Yangtze	1,661	1,660	121.4	1.00
Yellow	189	137	9.2	0.73
Tarim Interior	1,091	2,310	378.6	2.12
Qinghai-Tibetan Interior	7,351	7,535	563.1	1.02
Total	54,252	60,054	6,126.9	1.11

Source: Bajracharya and Shrestha 2011

Figure 1.2: Glacier area and percentage in the major river basins of the Hindu Kush Himalayan region

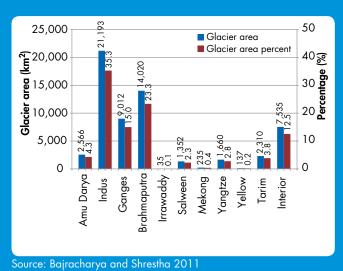
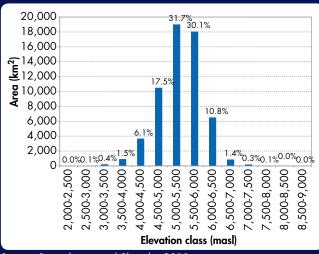



Figure 1.3: Distribution of glaciated area with elevation in the Hindu Kush Himalayan region

Source: Bajracharya and Shrestha 2011

86'0'E

Nepal

Nepal is a predominantly mountainous country, lying between 26°12′ and 30°27′ N and 80°04′ and 88°12′ E in the central Himalayas (Figure 1.4). The country extends for 840 km from east to west and between 90 and 230 km (average 180 km) from north to south, with a total area of 147,181 km². The altitudinal variation is extreme, from 64 masl in the southeast to 8,848 masl in the northeast, the greatest land-based relief in the world. Approximately 83% of the total land area consists of mountains and high hills, with the remainder comprising the foothills and Terai

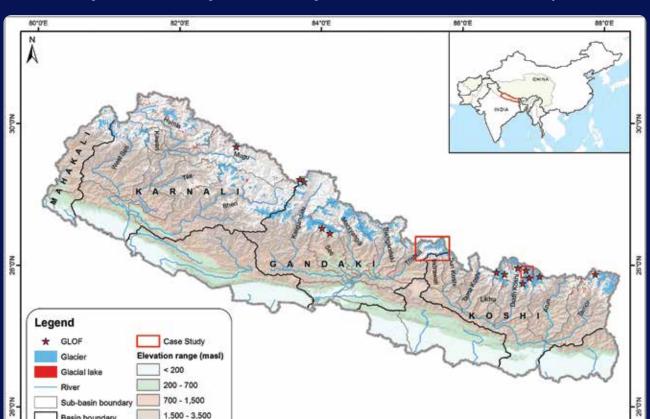


Figure 1.4: Glaciers, glacial lakes, and glacial lake outburst floods (GLOFs) in Nepal

Country boundary

> 3,500

82'0'E

88'0'E

plains to the south. The country is vulnerable to numerous hazards as a result of the fragile geological conditions, great elevation differences and steeply sloping terrain, soft soil cover, steep river gradients, and poor vegetation cover, combined with frequent earthquakes and high intensity seasonal rainfall. Monsoon rainfall commonly triggers a variety of slope movements, many of which cause extensive damage to life and property.

Glaciers and Glacial Lakes in Nepal

Nepal was first opened to foreign scientists in 1950. The first glaciologist to visit Nepal was Fritz Müller, a participant in the Swiss Everest Expedition of 1956. In the following years, the number of scientific expeditions gradually increased, but there are still no glaciers under long-term observation in the country, although individual studies have been made of the AX010, Khumbu, Mera, Yala, Lirung, and Rikha Samba glaciers. The Nagoya and Kyoto Universities of Japan organized the first systematic investigation of Nepal's glaciers in the form of the Glaciological Expedition of Nepal (GEN), led by Higuchi, which carried out a series of field studies (Higuchi 1976, 1977, 1978, and 1980). The first detailed study of the AX010 glacier was conducted in 1978/79 (Ageta et al. 1980; Ageta and Kadota 1992). Yala Glacier has been studied since the 1980s, and Rikha Samba Glacier has been surveyed intermittently since 1974 (Nakawo et al. 1976; Fugii et al. 1996; Fujita et al. 1997). The AX010 has the densest observations in terms of glacier extent, mass balance, and ice flow (Fujita et al. 2001).

The first inventory of glaciers and glacial lakes in Nepal was published by ICIMOD in 2001. It was based on 1 inch to 1 mile (1:63,360) and 1:50,000 blueprint topographic maps published by the Survey of India from 1963 to 1982, satellite images from 1999 and 2000, aerial photos taken from 1957 to 1959 for areas for which no topographic maps were available, and supplementary field work (Mool et al. 2001a). The study identified 3,252 glaciers with a total area of 5,324 km², almost 3.6% of the land area of Nepal. The inventory provided a first overview of the glaciers in the country, but the data were based on a wide temporal range and derived from different sources, and the values should be considered as indicative only. The 2001 inventory also mapped all lakes at elevations higher than 3,500 masl and classified them as erosion, valley trough, blocked, cirque, supra-glacial, or moraine dammed lakes. A total of 2,323 lakes were identified with an area of 75 km². A new inventory of glacial lakes was published by ICIMOD in 2011 based on an analysis of Landsat satellite images from 2005/6; 1,466 lakes were identified with a total area of 65 km² (ICIMOD 2011).

Several glacial lake outburst flood (GLOF) events have been documented in the Hindu Kush Himalayan region in recent years; these have sometimes caused loss of life and property and the destruction of valuable forest and pasture resources, farmland, and costly mountain infrastructure. Some GLOFs are reported to have created long-term secondary environmental degradation, with both physical and socioeconomic impacts locally and in neighbouring downstream countries (Ives 1986). In Nepal, at least 24 GLOF events have been identified to date, of which ten took place in the Tibet Autonomous Region of China but had an impact in Nepal (Bajracharya et al. 2007; Ives et al. 2010; ICIMOD 2011). On average, one GLOF event is recorded every three to ten years in the Himalayan region.

River Basins and Sub-basins in Nepal

The glaciated area in Nepal contains the upper reaches of four major river basins with 19 sub-basins, all of which are part of the Ganges basin system: the Mahakali, Karnali, Gandaki, and Koshi (Figure 1.4). The glacier-fed river basins have a total area of 89,457 km², or about 61% of the total land area of Nepal. All of the river basins have one or more sub-basins with transboundary sections. The mapping processes were limited to the sections within Nepal and the data refer only to the Nepal area of the basins.

Mahakali basin

The Mahakali River basin lies in the far western region of Nepal between longitudes 80°22′ and 80°52′ E and latitudes 28°32′ and 30°10′ N (Figure 1.4). The river runs along the border between Nepal and India and only about a third of the catchment area of this comparatively small basin lies in Nepal; hence it is not divided further into sub-basins in this report.

Karnali basin

The Karnali River basin is the largest river basin in Nepal and lies in the western and far northwestern regions between longitudes 83°30′ and 81°00′ E and latitudes 30°24′ and 28°48′ N (Figure 1.4). It has six sub-basins – the West Seti, Kawari, Humla, Mugu, Tila and Bheri – of which the Humla Karnali originates in Tibet Autonomous Region (TAR) of China and the remainder originate in Nepal. The major part of the Mugu Karnali flows from east to west, and the Humla Karnali from west to east, unlike most rivers in Nepal, which generally flow from north to south. In the lower reaches in India, the Karnali River is called the Ghaghara.

Gandaki basin

The Gandaki River basin lies in central Nepal between longitudes 82°55′ and 85°50′ E and latitudes 29°15′ and 28°05′ N (Figure 1.4). It has seven major sub-basins, five of which originate in glaciated areas – the Kali Gandaki, Seti, Marsyangdi, and Budhi Gandaki, all of which originate in Nepal, and the Trishuli, which originates in TAR/ China. The river is also known as the Sapta Gandaki and, in the lower reaches, the Narayani.

Koshi basin

The Koshi River basin lies in eastern Nepal between longitudes 85°30′ and 88°12′ E and latitudes 26°50′ and 28°15′ N, and is the smallest of the three main basins (Figure 1.4). It has seven major sub-basins – the Indrawati, Sun Koshi, Tama Koshi, Likhu, Dudh Koshi, Arun, and Tamor. The Arun, Tama Koshi, and Sun Koshi rivers originate in TAR/China; the remaining rivers originate within Nepal.

About This Report

The study described here was designed to develop a comprehensive inventory of the glaciers of Nepal in 2010, to compare the results with the status in approximately 1980, 1990, and 2000, and to use these results to describe the trends. The inventory was prepared using semi-automatic standardized analysis of Landsat satellite images. A detailed case study was also made of the change over time of selected glaciers in the Langtang and Imja valleys. The results were compared with the patterns of change identified from meteorological data from two local hydromet stations.

The methodology used, country and basin-wise results, and case study results are presented in the following chapters. The detailed data will be made available in an online database.

2 Methodology – Data Collection and Glacier Mapping

Introduction

Ideally, field-based mapping is required to gain precise information about a glacier, such as extent, depth, total mass, and mass balance. However, this is extremely challenging, labour intensive, and time consuming, and not possible for more than a handful of glaciers. The rugged terrain, extremely high altitude, harsh climatic conditions, lack of logistical support, and remoteness of the high Himalayan region mean that in most places field studies are impossible and where they have been carried out, they focus on a few lower altitude and more accessible glaciers. However, in recent years, the increased availability of satellite data in combination with advanced remote sensing tools and techniques have significantly facilitated mapping and monitoring of glaciers in these otherwise inaccessible regions, and this methodology was used to prepare the current inventory. The inventory used a combination of automated and manual interpretation of satellite images, complemented by limited field studies. The methodology is described in the following sections.

Data Collection and Preparation

Satellite images

Satellite data were first used to map glaciers in the early 1970s, making use of the US Earth Resources Technology Satellite (ERTS), later named Landsat-1. Since then, several studies on glacier mapping have used data from a steadily improving series of satellites launched by the world's space agencies, including the Landsat Multispectral Scanner (MSS), one of the first satellites used for glacier mapping by the United States Geological Survey (USGS), ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) used by GLIMS (Global Land Ice Measurements from Space) and GlobGlacier, and SPOT (Système Probatoire d'Observation de la Terre/Satellite Pour l'Observation de la Terre), also used by GlobGlacier.

The inventory and decadal glacier change analysis described here used Landsat 5-MSS, Landsat 7, and Landsat 7-ETM+ images, which are freely downloadable. Thirteen Landsat ETM images, including full and partial scenes, cover Nepal. Among these, nine scenes cover the northern part with all of the country's glaciers. To document the recent status of glaciers, it is ideally necessary to acquire low snow and cloud-free images; however, the freely downloadable images rarely meet the ideal requirements for glacier mapping and images must be selected within a number of years rather than a single year. Decadal analysis was carried out to determine glacier status and change in approximately 1980, 1990, 2000, and 2010. Landsat 5-MSS images from 1976 to 1979 were used to approximate 1980 (hereafter referred to as ~1980); Landsat 7TM images from 1988 to 1992 for 1990; Landsat 7-ETM+ from 1999 to 2001 for 2000, and Landsat 7-ETM+ from 2009 to 2011 for 2010. In each case, the images with the least snow cover and no cloud cover were selected. The images used in the study are listed in Annex 1.

The Landsat 7-ETM+ images from June 2003 onwards have a scan line dropout. The Landsat 7-ETM+ scan line corrector (SLC) failure causes the scanning pattern to exhibit wedge-shaped scan-to-scan gaps. These SLC failed images are referred to as SLC-off images. The scan gaps vary from one pixel or less near the centre of the images to fourteen pixels along the east and west edges. Approximately 22% of the normal scene areas in SLC-off images are missing; however, the remaining spectral information maintains the same radiometric and geometric quality as images prior to the failure (Storey et al. 2005).

Various techniques are available for correcting and filling the gaps in the SLC-off images. The present study used the IDL extension in ENVI (Environment for Visualizing Images) software to fill the SLC gap. The correction is based

on combining overlapping areas between preceding and subsequent imagery in those areas that show a gap. This is generally considered to be the best method.

Digital elevation model

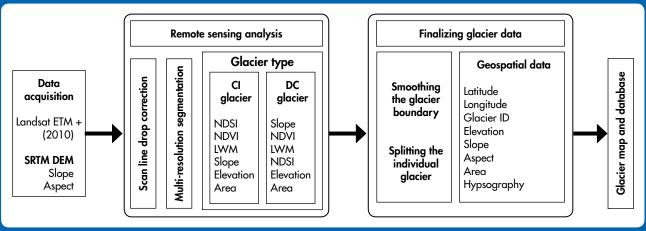
Topographic information such as elevation and slope play a crucial role in the identification of glaciers. This information is derived from a digital elevation model (DEM). A DEM was also used to derive crucial glacier parameters such as hypsometry, minimum/maximum/median elevation, aspect, slope, and other factors related to elevation. The study used the SRTM (Shuttle Radar Topography Mission) DEM version 4.1 from CGIAR at a spatial resolution of 90 m.

The Universal Transverse Mercator (UTM) WGS 84 projection system was used for glacier mapping because the base satellite imagery (Landsat) was provided in this projection. In the UTM WGS 84 projection system, the Nepal Himalayas fall into Zone 44N to 45N. Glacier area was analysed using this projection system.

Climate data

Monthly and yearly air temperature data from 1988 to 2008 were obtained from the Nepal Department of Hydrology and Meteorology (DHM) for Kyanjing station (3,920 masl) in the Langtang valley and Dingboche station (4,355 masl) in the Imja valley of the Khumbu region. There are some data gaps. For the study, these were partially filled using automatic and semi-automatic weather station data; the remaining data gaps were filled by interpolating and extrapolating from the average linear trend and data patterns of the available data. The maximum, minimum, and mean annual and seasonal temperatures for Kyanjing and Dingboche were generated for a period of 21 years. The data were classified into annual, pre-monsoon (March to May), monsoon (June to September), post-monsoon (October and November), and winter (December to February). The annual, seasonal, and decadal temperature change was analysed and compared with the changes in glacier area over the different time intervals.

Glacier Mapping and Volume Estimation


Semi-automatic glacier mapping

Methods have been developed for the automatic delineation of glaciers in satellite images but they are only valid for clean-ice glaciers (Frey and Paul 2012; Bolch et al. 2008, 2010; Bhambri and Bolch 2009; Paul and Andreassen 2009; Racoviteanu et al. 2009; Paul and Kaab 2005; Paul 2002), whereas in most parts of the HKH, debriscovered glaciers, or debris-covered tongues, predominate. While automatic methods have been developed to map debris-covered glaciers, they always produce errors, which in the best cases require manual correction. Mapping without intensive human involvement is not yet technically feasible. Manual mapping of glaciers using satellite imagery, complemented by limited ground-based measurements for verification, is a reasonable approach but extremely labour intensive. The current inventory used semi-automatic mapping – a combination of manual and automatic methods (Bajracharya et al. 2014).

Semi-automatic glacier mapping is able to rapidly deliver glacier data consistent with established international inventory standards. In the approach used here, the glacier outlines were delineated using an object-based image classification (OBIC) approach. After the SLC-off correction, the image was segmented in Definiens Developer software using multi-resolution segmentation. This is a heuristic optimization procedure to locally minimize the average heterogeneity of image objects at a given resolution. Different algorithms were used to differentiate cleanice (CI) and debris-covered (DC) glaciers based on their spectral characteristics. The multi-stage classification process is summarized in Figure 2.1. A detailed description is provided in Bajracharya and Shrestha (2011) and Bajracharya et al. (2014).

In order to identify the decadal changes from \sim 1980 to 2010, a base map of glacier outlines was established for 2010 using semi-automatic mapping. The glacier outlines for the other years (2000, 1990, and \sim 1980) were then generated by manual modification using overlays of the satellite images from the respective years.

Figure 2.1: Methodology used for mapping clean-ice and debris-covered glaciers using satellite images

Modified from Bajracharya and Shrestha 2011

Estimation of glacier volume

Detailed field measurements are required to determine the volume of glaciers. When these are not available the volume must be estimated. Various approaches have been used for estimation, including the volume-area (V-A) relationship (e.g., Chen and Ohmura 1990; Bahr et al. 1997), slope-dependent ice-thickness estimation (Haeberli and Hoelzle 1995), and more recently a variety of spatially distributed ice-thickness models (e.g., Clarke et al. 2009; Farinotti et al. 2009; Huss and Farinotti 2012; Li et al. 2012; Paul and Linsbauer 2012). All these methods have been used to estimate glacier volume in the Himalayas and Karakoram (Frey et al. 2014), but the results are slightly different and it is not clear which method is the most reliable. The area-thickness relationship has been used by a number of organizations to estimate the volume of glaciers in the Hindu Kush Himalayan region, including the Lanzhou Institute of Glaciology and Geocryology (LIGG) (LIGG/WECS/NEA 1988); the International Centre for Integrated Mountain Development (ICIMOD) (Bajracharya and Shrestha 2011; Mool et al. 2001a, b); the Indian Space Research Organization (ISRO) (Kulkarni et al. 2007, 2014a,b), and recently by Frey et al. (2014). Therefore, glacier area-thickness relationship was chosen in this study to estimate the volume of ice reserves.

The relationship between glacier area (F) and mean ice thickness (H) was estimated using the empirical formula

$$H = -11.32 + 53.21 F^{0.3}$$

The ice reserves were then estimated from the mean ice thickness multiplied by the glacier area.

Glacier attributes

A variety of different attributes were identified for individual glaciers in addition to area and estimated ice reserves. They included the location, elevation, aspect, mean slope, morphological classification, and morphological type (Muller et al. 1977). The allocation of attributes is described in detail in Bajracharya and Shrestha (2011) and summarized briefly in the following pages.

The clean-ice (CI) and debris-covered (DC) components of glaciers were analysed in the 2010 images using semi-automatic delineation with 'eCognition Developer'. Generally CI glaciers have steeper slopes than DC glaciers and slope was used as one distinctive feature to help differentiate DC parts of glaciers from non-glacier rock. Many glaciers have both a higher elevation CI component and a lower elevation DC component. For the purposes of differentiation of attributes like number, area, elevation, and other features, CI and DC components were counted separately. But in the overall counts of glacier number, they were counted as one. Thus, the sum of CI and DC glacier numbers was generally higher than the total number of glaciers. This additional analysis was not performed for the earlier time periods.

The areas of individual glaciers were derived from the mapping process as described above. The glaciers were only mapped if their area was larger than 0.02 km². For the analysis, glaciers were grouped into six size classes: class $1a \le 0.10 \text{ km}^2$; class $1b = 0.11 \text{ to } 0.50 \text{ km}^2$; class $2 = 0.51 \text{ to } 1.00 \text{ km}^2$; class $3 = 1.01 \text{ to } 5.00 \text{ km}^2$, class $4 = 5.01 \text{ to } 10.00 \text{ km}^2$, and class $5 \ge 10.01 \text{ km}^2$.

The highest and lowest elevations were derived from the DEM for each glacier elevation and had an uncertainty of ± 30 –60 m depending on the pixel resolution of the DEM; the mean elevation was calculated as the averaged value of all the glacier pixels in the digital elevation model (DEM) measured in metres above sea level (masl). The calculations were carried out for CI and DC components separately. The lowest elevations (elevation of the terminus) of all mountain and all valley glaciers were also averaged separately in each individual sub-basin to facilitate analysis of overall relative recession in future inventories, since the recession of glaciers at the lowest elevation depends on the glacier type.

The latitude and longitude were derived from the central coordinates of each glacier polygon. The centroid of the glacier polygon was generated automatically. If the central point was in a rocky outcrop, the points were shifted manually to the nearest point inside the glacier polygon.

The mean aspect was derived from the DEM as the average value of all cells covered by the glacier and transformed to the eight cardinal directions as described in Bajracharya and Shrestha (2011). Glacier recession does not take place evenly around the boundaries, thus the aspect of a glacier may change as the position of its boundaries change.

The mean slope was also derived from the DEM as the average value of all cells covered by the glacier and was divided into seven classes at intervals of 10°; it was also calculated for CI and DC components separately. The mean slope is an important proxy for other parameters like mean thickness and also relates to other dynamic measures, with glaciers on steep slopes generally being more unstable. The mean slope of a glacier can also change as the glacier boundaries change.

The glaciers were classified morphologically using the World Glacier Monitoring Service classification (WGMS 1989) as described in Bajracharya and Shrestha (2011). Generally six types of glacier were observed, valley trough type and five types of mountain glacier (ice apron, cirque, niche, basin, and miscellaneous). The classes are not unique and different analysts might choose a different type, but the classification does provide a good overall indication of the type of glaciers in a basin. Again, the classification type can change as a glacier recedes and the boundaries change. Briefly, mountain glaciers commonly have a hanging profile and the major source of nourishment is snow and/or drift snow. They are characterized by steep mountain slopes and small alpine niche basins and are mostly Cl type. Valley glaciers have a regular longitudinal profile from head to terminus with steeper (Cl) slopes on the upper levels and less steep (DC) slopes in the lower parts. The part of the valley glacier at the head has the characteristics of a mountain glacier, but due to its continuation the whole ice mass is counted as a valley glacier. These glaciers are mainly nourished by snow and drift snow in the upper part and snow and ice avalanches in the lower part. A large accumulation area is normally needed for the glacier to extend far into the valley, thus the average area of valley glaciers is usually higher than that of mountain glaciers, the elevation differences are high, and the area and ice reserves are large.

Accuracy rating

Images were selected that had the least snow cover and almost no cloud cover to ensure the accuracy of the glacier outlines. The glacier outlines were edited at a scale of 1:25,000, which is suitable for visualization, and published at a scale of 1:50,000.

There is an uncertainty in the glacier area associated with the accuracy with which the glacier margins are delineated, which depends on the image resolution, snow cover, and contrast between the glacier and the adjacent terrain. To minimize the uncertainty, images with the least snow cover were used and the semi-automatically delineated (OBIC derived) glacier polygons were refined by manual editing, further modified by comparing with higher resolution Google images, and finally cross-checked by a single person. The MSS images have a resolution

of 79 m and the TM and ETM+ images, a resolution of 30 m. There are several suitable MSS images available for glacier terminus mapping (Vohra 2010), but with more snow coverage than those of the TM and ETM+ images, which also contributes to some uncertainty in the values.

The boundary delineation is affected by various types of obscurity. A maximum offset of the boundary of not more than half of the image resolution (i.e., ± 15 m in TM and ETM+ and ± 40 m in MSS) was assigned to each type of obscurity. The uncertainties in the glacier area were estimated from the difference between the glacier area determined from the glacier polygon (which depends on the projection parameters) and the area calculated from the pixel base (which depends on the image resolution).

The total uncertainty (error) in the glacier area was calculated as

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} \left(\alpha_{i} - \boldsymbol{\hat{\alpha}}_{i}\right)}{n}^{2}}$$

Where, a_i = area of glacier from glacier polygon, and \hat{a}_i = area of glacier calculated on the basis of pixels.

The uncertainties of the glacier area in the present study were calculated to be 2.6, 1.3, 1.6 and 1.6% for the \sim 1980, 1990, 2000, and 2010 values, respectively. This uncertainty is lower than previous estimates of about 3% (Andreassen et al. 2008; Bajracharya et al. 2014; Frey and Paul 2012; Bolch et al. 2010).

3 The Status of Glaciers in Nepal in 2010

Status of Glaciers in Nepal

The results of the analysis of the Landsat satellite images for 2010 are summarized in Table 3.1. The table shows the area, elevation, and estimated ice reserves of Nepal's glaciers (clean-ice and debris-covered) in 2010. The geographic distribution of the glaciers is shown in Figure 3.1. A total of 3,808 glaciers were identified with an area of 3,902 km². The Ngojumba glacier in the Dudh Koshi sub-basin was the largest glacier with an area of 78.7 km².

Number, area, and estimated ice reserves

The glacier number, area, and estimated ice reserves in the 19 sub-basins are shown graphically in Figure 3.2; the values for the sub-basins and basins overall are given in Table 3.1. The total number of glaciers was highest in the Karnali and Gandaki basins, whereas the area and ice reserves were highest in the Gandaki and Koshi basins. The number of glaciers in the sub-basins was variable. The Kali Gandaki sub-basin had the most with 504, whereas the Kawari, Tila, Seti, Sun Koshi, Tama Koshi, and Likhu sub-basins all had fewer than 100 glaciers. The estimated volume of ice reserves depends on the glacier area not the number. The average area of individual glaciers was less than 1 km² in the Mahakali and Karnali basins, greater than 1 km² in the Gandaki and Koshi basins, and just over 1 km² overall. The greatest ice reserves were contributed by the Tamor, Dudh Koshi, Marsyangdi, Budhi Gandaki, and Kali Gandaki sub-basins in the Koshi and Gandaki basins.

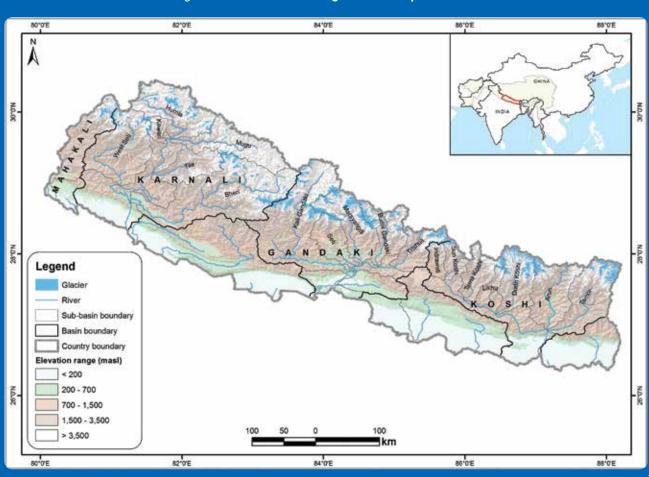
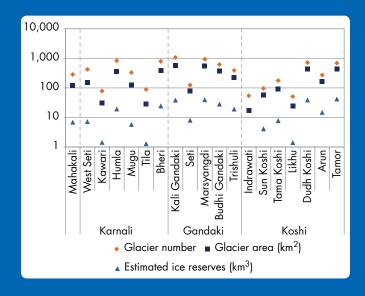


Figure 3.1: Distribution of glaciers in Nepal in 2010

Table 3.1: Summary of glaciers in the sub-basins of Nepal based on the satellite images of 2010

	Sub-basin (glaciated)	rciated)	Glaci	Glacier number	nber		Glacier	ier area (km²)	km²)		Lowest	Estimated			Elevatic	Elevation (masl)			Mear	Mean slope
Basin	2	Area	(2	-	į	2				latitude	ice reserves	Ū	_		20	Average terminus	terminus	_	(deb)
	e Name	(km²)	5	3	1010	-	3	<u> </u>	Largest Average	Average	(degree)	(km ₃)	Min	Мах	Min	Мах	Mountain	Valley	ū	20
Mahakali	Mahakali *	5,022	164	14	164	92.6	19.9	112.5	11.1	69.0	29.829	6.97	4,031	6,850	3,695	5,299	5,063	4,077	35	13
	West Seti	7,378	270	14	270	127.9	18.1	146.0	12.9	0.54	29.658	7.28	4,387	6,982	4,132	5,329	5,105	4,484	30	12
	Kawari	822	48	-	48	26.0	3.2	29.2	7.0	0.61	29.677	1.45	3,874	6,834	3,631	4,015	4,974	3,631	24	9
	Humla*	5,983	474	33	474	309.5	28.4	337.9	14.3	0.71	29.679	19.48	4,340	6,939	4,271	5,596	5,182	4,670	24	12
Karnali	Mugu	5,374	203	16	205	6.66	19.3	119.2	7.6	0.58	29.108	5.84	4,650	6,837	4,507	5,536	5,300	4,588	28	12
	Tila	3,329	61	-	61	24.4	2.4	26.8	7.4	0.44	29.187	1.31	4,444	6,309	4,124	4,710	5,118	4,124	34	10
	Bheri	13,688	401	10	401	349.1	14.7	363.8	23.4	0.91	28.665	24.66	4,374	7,541	4,133	5,402	5,328	4,735	30	10
	Sub-total	36,575	1,457	75	1,459	936.8	86.1	1,022.8	23.4	0.70	28.665	60.04	3,874	7,541	3,631	965'5	5,168	4,372	28	10
	Kali Gandaki*	11,862	504	16	504	512.8	14.6	527.4	27.0	1.05	28.477	38.90	4,187	8,101	3,846	5,705	5,640	4,304	1 29	16
	Seti	2,947	45	က	45	9.79	4.0	71.6	43.6	1.59	28.466	8.09	4,432	7,504	3,894	2,086	5,380	Ť	- 37	18
-	Marsyangdi	4,787	384	22	384	475.3	33.7	509.0	28.6	1.32	28.340	39.97	4,034	7,761	3,651	5,653	5,408	4,481	30	11
Gandaki	Budhi Gandaki*	3,642	243	17	242	313.7	35.3	348.9	32.2	1.44	28.266	28.53	3,753	8,019	3,282	5,422	5,187	4,154	34	12
	Trishuli*	2,912	164	13	165	172.1	35.4	207.6	50.2	1.26	28.107	19.26	3,978	7,184	3,650	5,520	5,305	4,377	33	12
	Sub-total	26,149	1,340	71	1,340	1,541.5	123.0	1,664.5	50.2	1.24	28.107	134.75	3,753	8,101	3,282	5,705	5,384	4,329	33	14
	Indrawati	1,229	37	0	37	16.4	0	16.4	4.3	0.44	28.102	0.73	4,843	5,911	•	٠	5,112	•	- 23	•
	Sun Koshi *	1,437	39	9	39	48.2	4.3	52.6	13.9	1.35	28.046	4.16	4,136	6,940	4,047	5,134	5,164	4,200	32	15
	Tama Koshi∗	2,716	85	8	85	71.7	12.7	84.4	32.2	0.99	27.776	7.89	4,455	6,648	4,363	5,627	5,222	4,594	1 30	14
:	Likhu	1,051	27	5	27	20.0	3.0	23.0	8.9	0.85	27.707	1.42	4,576	869'9	4,357	5,219	5,157	4,840	24	18
Koshi	Dudh Koshi	4,065	286	43	287	281.1	110.0	391.1	78.7	1.36	27.638	39.20	4,390	8,209	4,367	5,753	5,410	4,860	31	12
	Arun *	5,156	108	5	108	133.7	15.4	149.2	43.3	1.38	27.651	14.98	4,470	7,851	4,200	5,851	5,328	4,585	29	11
	Tamor	950′9	262	29	262	314.7	71.2	385.9	73.1	1.47	27.528	42.26	4,633	8,401	4,161	5,988	5,466	4,766	27	14
	Sub-total	21,711	844	96	845	885.9	216.7	1,102.6	78.7	1.30	27.528	110.64	4,136	8,401	4,047	5,988	5,265	4,641	28	14
Nepal		89,457	3,805	256	3,808	3,456.8	445.7	3,902.4	78.7	1.02	27.528	312.40	3,753	8,401	3,282	5,988	5,220	4,355	31	13

* Area within Nepal


Glacier area classes

The number, area, and estimated ice reserves in each size class are summarized in Table 3.2. Close to half of the glaciers (1,739) were in class 1b, and one-fifth (781) in class 1a. However, the class 1a and class 1b glaciers contributed only 1% and 11% of the total area, respectively, and together less than 4% of the ice reserves, whereas the 62 class 5 glaciers contributed more than one-third of the total glacier area and more than half of the ice reserves. The largest glacier was the Ngojumba glacier in the Dudh Koshi sub-basin with an area of 78.7 km².

Glacier elevation

The maximum glacier elevation was 8,400 masl, below the elevation of the highest peaks (Mount Everest and others) because the slopes at the top of these mountains are very steep and virtually ice free. Furthermore, the glacier mapping threshold value was

Figure 3.2: Glacier number, area, and estimated ice reserves in Nepal in 2010

0.02 km², thus any small ice patches close to the peak would not have been identified. Although the glaciers don't start at the peak, the peaks do contribute snow to the accumulation areas below in the form of wind-blown snow and snow avalanches.

The maximum glacier elevation increased from west to east (Figure 3.3). The Koshi basin had the highest glaciers overall and the Mahakali basin the lowest. Figure 3.4 shows the maximum and minimum glacier elevations in the sub-basins. The Indrawati sub-basin had the smallest range of glacier elevation; there were not many glaciers in this basin and they were all small mountain type. The greatest range of elevation was found in the Tamor and Dudh Koshi sub-basins in the Koshi basin, and the Budhi Gandaki, Kali Gandaki, and Marsyangdi sub-basins in the Gandaki basin. This geographical pattern reflects the existence of a greater number of valley glaciers in central and eastern Nepal than in western Nepal.

Latitude and longitude

The range of latitude and longitude in the glaciers in the four basins is shown in Figure 3.5. Nepal extends along the Himalayan range with glaciers in all areas from west to east. This pattern is reflected in the greater range of longitude than of latitude among the glaciers. The decreasing latitude from west to east reflects the northwest to southeast line of the Himalayan range, and of Nepal itself.

Table 3.2: Glacier area classes (2010)

Class	Area	Glacier	number	Glacie	r area	Estimated i	ce reserves	Mean area per glacier
	(km²)	Number	%	km²	%	km³	%	km²
1a	≤ 0.10	<i>7</i> 81	20.5	50.3	1.3	0.6	0.2	0.06
1b	0.11–0.50	1,739	45. 7	431.4	11.1	10.8	3.5	0.25
2	0.51–1.00	556	14.6	394.2	10.1	14.6	4. 7	0.71
3	1.01–5.00	606	15.9	1,234.1	31.6	70.7	22.6	2.04
4	5.01–10.00	64	1.7	444.3	11.4	37.5	12	6.94
5	≥ 10.01	62	1.6	1,348.1	34.5	1 <i>7</i> 8.2	57	21.74
	Total	3,808	100	3,902	100	312.4	100	1.02

Figure 3.3: Elevation range of clean-ice and debriscovered glaciers in the major basins (2010)

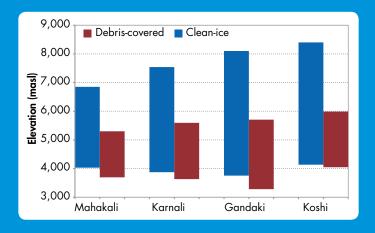


Figure 3.4: Elevation range of glaciers in the sub-basins (2010)

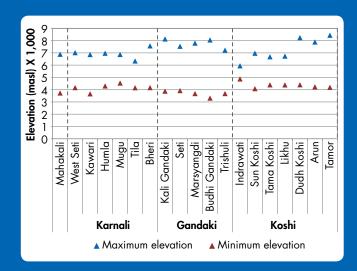
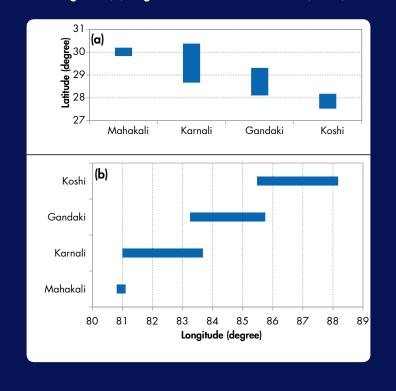



Figure 3.5: Maximum and minimum latitude (a) and longitude (b) of glaciers in individual basins (2010)

Aspect

Nepal extends along the southern flank of the Himalayan range; thus the rivers that originate from the southern slopes of the mountains generally flow from north to south, while the majority of glaciers in the headwater regions have southwest to southeast aspects. The number, area, and estimated ice reserves of glaciers with different aspects is summarized in Table 3.3, and the percentage with different aspects and the proportion of these in different mean slope classes is shown in the rose diagram in Figure 3.6. Glaciers with a southwest aspect predominated in number, but those with a south aspect contributed the greatest area. Only 14 glaciers, less than 0.5%, had a north aspect (1, 8, 2, and 3 in the Mahakali, Karnali, Gandaki, and Koshi basins, respectively), and they were all very small, with a total area of only 1.7 km², or 0.12 km² per glacier on average

Slope

The mean slope of the glaciers ranged from less than 10° to more than 60° (Figure 3.6 and Table 3.4),

with slopes of 20–30° the most common in terms of both number and area. There were more glaciers with slopes of 30–40° than slopes of 10–20°, but the total area of glaciers with slopes of 10–20° was greater, indicating that the steeper glaciers were smaller on average than less steep glaciers. Mean slopes less than 10° and more than 60° were rare.

Morphological type

The morphological classification of the glaciers is summarized in Table 3.5. Almost all the glaciers (97%) were mountain type (ice apron, cirque, niche, and basin), of which two-thirds were mountain basin type and a quarter ice apron type. Mountain basin glaciers were the largest of the mountain type glaciers with an average area of 0.9 km²,

Table 3.3: Glacier aspect (2010)

Aspect	N	NE	Е	SE	S	SW	W	NW	Total
Number	14	255	590	634	<i>717</i>	<i>77</i> 3	561	264	3,808
Area (km²)	1.7	89.1	466.6	754.6	1,078.7	991.3	412.6	107.8	3,902
Estimated ice reserves (km³)	0.03	3.1	30. 9	58.2	108.3	86.3	21.6	4.1	312.4

Table 3.4: Glacier mean slope (2010)

Mean slope (deg)	<10	10–20	20–30	30–40	40–50	50-60	>60	Total
Number	7	625	1,455	1,162	464	89	6	3,808
Area (km²)	18.6	1,031.2	2,056.2	618.4	152.1	24.9	1	3,902
Estimated ice reserves (km³)	1. <i>7</i>	89.5	183.3	31.4	5.6	0.9	0.02	312.4

Table 3.5: Morphological classification of glaciers (2010)

	Glacier type	Glacier	number	km² % km³ % 0.5 8.2 0.2 0.3 0.1 3.7 243.1 6.2 8.3 2.7 0.6 4.9 0.1 0.1 0 3.3 39.6 1 0.9 0.3 3.9 2,165.9 55.5 125.4 40.2 3.9 1,440.8 36.9 177.3 56.8	Mean area per glacier			
		Number	%	km²	%	km³	%	km²
	Miscellaneous	18	0.5	8.2	0.2	0.3	0.1	0.45
Ë	Ice Apron	942	24.7	243.1	6.2	8.3	2.7	0.26
Mountain	Cirque	24	0.6	4.9	0.1	0.1	0	0.20
ž	Niche	315	8.3	39.6	1	0.9	0.3	0.13
	Basin	2,397	62.9	2,165.9	55.5	125.4	40.2	0.90
Valley	Trough	112	2.9	1,440.8	36.9	1 <i>77</i> .3	56.8	12.86
	Total	3,808	100	3,902	100	312.4	100	1.02

and contributed 56% of the total glacier area and 40% of the estimated ice reserves. The valley glaciers were much larger with an average area of 12.9 km^2 , and although few in number (3% of the total), they contributed 37% of the glacier area and 57% of the estimated ice reserves.

Clean-ice and debris-covered glaciers

Almost 89% of the total glacier area in Nepal was from CI glaciers (Table 3.1). The average slope of the clean-ice (CI) and debris-covered (DC) glaciers in the separate sub-basins is shown in Figure 3.7. There was a clear demarcation, with all CI glaciers having slopes above 20° (range 23–37°, average 31°), and all DC glaciers having slopes below 20° (range 6–18°, average 13°).

DC glaciers contained 11.4% of the total glacier area, with a marked variation in the individual basins, from 7.4% in the Gandaki basin to 19.7% in the Koshi basin (Table 3.1). The difference was even more marked among the sub-basins, from zero in the Indrawati sub-basin and 2.8% in the Kali Gandaki sub-basin to 28.1% in the Dudh Koshi sub-basin

Figure 3.6: Percentage of glaciers with different aspects and slope (2010)

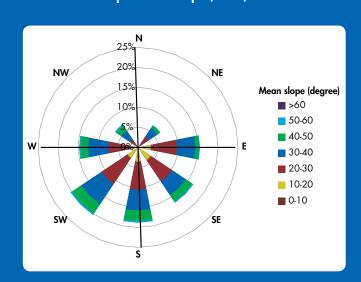


Figure 3.7: Average slope of clean-ice and debriscovered glaciers in the sub-basins (2010)

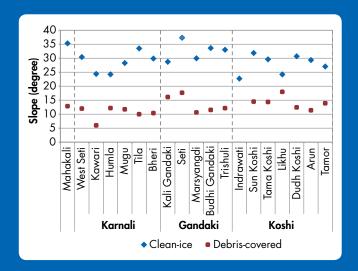


Figure 3.8: Area of clean-ice and debris-covered glaciers in the sub-basins (2010)

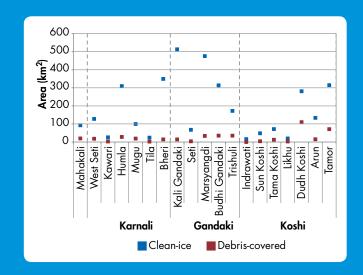
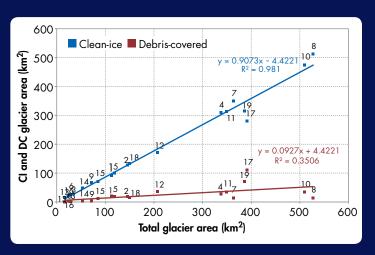
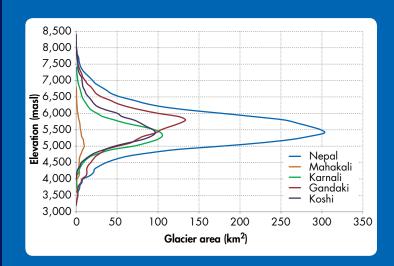




Figure 3.9: Variation of clean-ice and debris-covered glacier area with total glacier area in the sub-basins (2010)

ID	Sub-basin	ID	Sub-basin	ID	Sub-basin	ID	Sub-basin
1	Mahakali	6	Tila	11	Budhi Gandaki	16	Likhu
2	West Seti	7	Bheri	12	Trishuli	17	Dudh Koshi
3	Kawari	8	Kali Gandaki	13	Indrawati	18	Arun
4	Humla	9	Seti	14	Sun Koshi	19	Tamor
5	Mugu	10	Marsyangdi	15	Tama Koshi		

Figure 3.10: The 100 m bin area-altitude distribution of glaciers in the major basins and Nepal overall (2010)

(Figure 3.8). The CI area increased almost proportionately with total glacier area in a sub-basin, whereas the DC area increased only slightly with overall glacier area (Figure 3.9).

Area-elevation distribution (hypsography)

The area-elevation distribution of the glaciers in the major basins and Nepal overall is summarized in Table 3.6 based on a 500 m bin, and shown graphically in Figure 3.10 using a 100 m bin. Two-thirds of the glacier area (2,577 km²) lay between 5,000 and 6,000 masl; less than 50 km² of glacier area was found in each 100 m elevation bin above 6,500 masl and below 4,700 masl. The hypsographic curves show that the Gandaki basin had the highest elevation glaciers and the Mahakali basin the lowest (Figure 3.10).

Table 3.6: Area elevation distribution of glaciers in the major basins of Nepal in 2010

Elevation	Mah	akali	Kar	nali	Gan	daki	Ko	shi	То	tal
zone (masl)	km²	%	km²	%	km²	%	km²	%	km²	%
3,000–3,500	0	0	0	0	1.9	0.1	0	0	1.9	0
3,500–4,000	1.6	1.4	3.5	0.3	15.2	0.9	0	0.0	20.2	0.5
4,000–4,500	15.2	13.5	14.3	1.4	59.7	3.6	8.4	0.8	97.7	2.5
4,500–5,000	27	24	114.9	11.2	130.1	7.8	92	8.3	364.1	9.3
5,000–5,500	40.6	36.1	463.4	45.3	369.4	22.2	379	34.4	1,252.4	32.1
5,500–6,000	20.7	18.4	315.1	30.8	604.4	36.3	384.6	34.9	1,324.8	33.9
6,000–6,500	6.1	5.5	80.5	7.9	334.2	20.1	154	14	574.8	14.7
6,500–7,000	1.3	1.1	25.4	2.5	108.9	6.5	53. <i>7</i>	4.9	189.3	4.9
7,000–7,500	0	0	5.4	0.5	34.6	2.1	22.7	2.1	62.8	1.6
7,500–8,000	0	0	0	0	5.8	0.3	7.5	0.7	13.3	0.3
8,000–8,500	0	0	0	0	0	0	0.6	0.1	0.6	0
Total	113	100	1,023	100	1,664	100	1,103	100	3,902	100

Status of Glaciers in Individual River Basins

The overall glacier status in Nepal as a whole and its four major basins – the Mahakali, Karnali, Gandaki, and Koshi – are described in the previous section. The following sections describe the status within the individual basins.

The Mahakali basin

The Mahakali River flows along the border between Nepal and India in the far western region of Nepal; only 35% of the catchment area lies in Nepal. There were 164 glaciers within the Nepal part of the basin with a total area of 113 km² and estimated ice reserves of about 7 km³ (Table 3.7). The areal distribution is shown in Figure 3.11.

The number, area, and estimated ice reserves in each size class of glacier are shown in Table 3.7. This basin had the greatest proportion of very small and small glaciers of all the basins, with close to three-quarters (124) in the smallest two classes (37% in class 1a, 39% in class 1b), but contributing only 16% of the glacier area. The five glaciers in classes 4 and 5 contributed 33% of the glacier area and close to half of the ice reserves.

The glacier elevation ranged from 3,695 to 6,850 masl (Figure 3.3) with an average of 5,063 masl for mountain type glaciers and 4,077 masl for valley type glaciers. Details of elevation, aspect, and slope of the glaciers in the Mahakali basin are provided in Annex 3 (Figure A3.1).

Table 3.7: Glacier area classes in the Mahakali basin in 2010

Class	Area	Glacier	number	Glacie	er area	Estimated i	ce reserves	Mean area per glacier
	(km²)	Number	%	km²	%	km³	%	km ²
la	≤ 0.10	60	36.6	3.6	3.2	0	0.6	0.06
1b	0.11–0.50	64	39	14.1	12.6	0.3	4.8	0.22
2	0.51-1.00	1 <i>7</i>	10.4	11.6	10.3	0.4	6.1	0.68
3	1.01–5.00	18	11	46.2	41	2.9	41.9	2.57
4	5.01–10.00	4	2.4	25.9	23	2.2	30.9	6.48
5	≥ 10.01	1	0.6	11.1	9.9	1.1	15. <i>7</i>	11.13
	Total	164	100	112.6	100	6.97	100	0.69

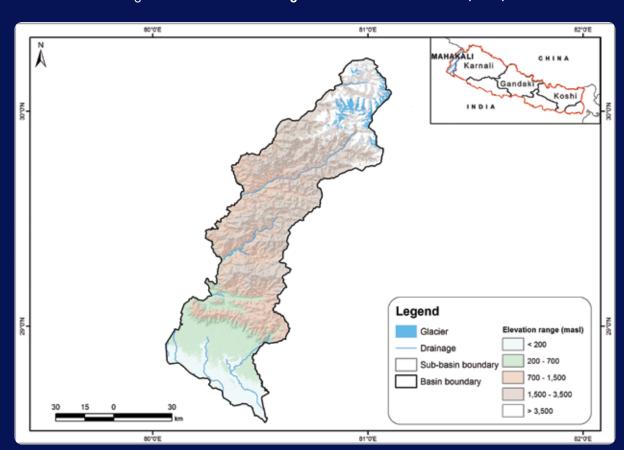


Figure 3.11: Distribution of glaciers in the Mahakali basin (2010)

Table 3.8: Morphological classification of glaciers in the Mahakali basin in 2010

	Glacier type	Glacier	number	Glacie	er area	Estimated in	ce reserves	Mean area per glacier
		Number	%	km²	%	km³	%	km²
	Miscellaneous	0	0	0	0	0	0	0
	Ice Apron	58	35.4	9.7	8.6	0.3	3.9	0.17
. <u>⊑</u>	Cirque	2	1.2	1.4	1.2	0.1	0.7	0.68
Mountain	Niche	5	3	0.4	0.3	0.01	0.1	0.08
×	Basin	88	53.7	45.4	40.3	2.2	31.3	0.52
Valley	Trough	11	6.7	55.8	49.6	4.5	64.1	5.07
	Total	164	100	113	100	7	100	0.69

The morphological classification of the glaciers is summarized in Table 3.8. The majority of glaciers (93%) were mountain type, with 54% mountain basin type and 35% ice apron type. Mountain basin type glaciers contributed 40% of the total glacier area and 31% of the estimated ice reserves, while apron type glaciers contributed 8.6% of the glacier area and 3.9% of the estimated ice reserves. Less than 7% of the glaciers were valley type, but these large glaciers (average area 5.1 km²) contributed 50% of the total glacier area and 64% of the estimated ice reserves.

There were only 14 DC type glaciers in the basin with a total area of 19.9 km² (Table 3.1). The average slope of the clean-ice glaciers was 35°, the steepest of all the basins, which reflects the fact that these are mainly very small glaciers high in the mountains.

The area-elevation distribution of the glaciers using a 100 m bin is shown graphically in Figure 3.12. The highest value for a 100 m bin lay between 5,000 and 5,100 masl (9.9 km^2) .

The Karnali basin

The Karnali basin is the largest of the four river basins and had the greatest number of glaciers (Table 3.1). The six sub-basins – the West Seti, Kawari, Humla, Mugu, Tila, and Bheri – contained 1,459 glaciers with a total glacier area of 1,023 km² and estimated ice reserves of 60 km³. The geographical distribution of the glaciers is shown in Figure 3.13. One-third of the glaciers (474) and a third of the glaciated area (338 km²) were found within the Humla sub-basin; and just over a quarter of the glaciers (401) and more than a third of the glaciated area in the Bheri sub-basin (Table 3.1). The largest single glacier (G083246E28708N) had an area of about 23.4 km², but the average area per glacier was only 0.7 km².

The number, area, and estimated ice reserves in each size class of glacier in the individual sub-

basins are shown in Table 3.9. Details of the glacier area classes in the individual sub-basins are given in Annex 2 (Table A2.1). Again 70% (993) of the glaciers were in class 1a (23%) or class 1b (45%) and together these small glaciers contributed 18% of the glacier area and 7% of the ice reserves. The ten glaciers in class 5 had an average area of 15 km² and contributed 15% of the glacier area and 28% of the ice reserves.

The glacier elevation ranged from 3,631 to 7,541 masl (Figure 3.14). The lowest elevation of clean-ice glaciers was 3,874 masl and of DC glaciers 3,631 masl, both in the Kawari basin. The highest CI glacier elevation was

Figure 3.12: The 100 m bin area-elevation distribution of glaciers in the Mahakali basin (2010)

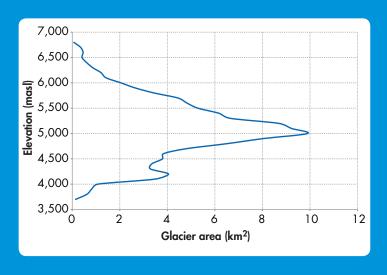


Figure 3.13: Distribution of glaciers in the Karnali basin (2010)

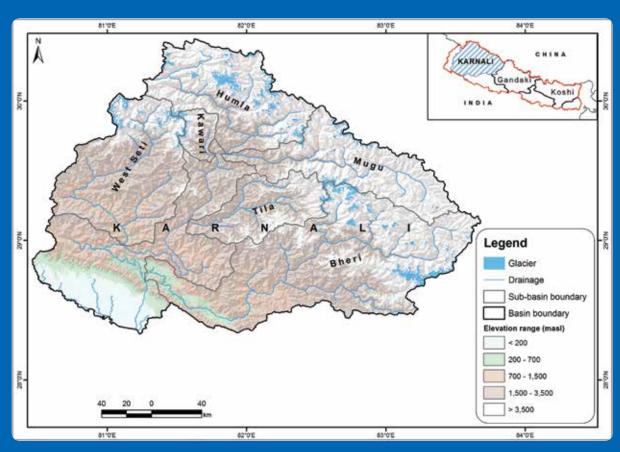


Table 3.9: Glacier area classes in the Karnali basin (2010)

Class	Area	Glacier number		Glacier area		Estimated ice reserves		Mean area per glacier
	(km²)	Number	%	km ²	%	km³	%	km ²
1a	≤ 0.10	341	23.4	22	2.2	0.3	0.5	0.06
1b	0.11–0.50	652	44.7	158. <i>7</i>	15.5	3.9	6.6	0.24
2	0.51–1.00	234	16	166.1	16.2	6.2	10.3	0.71
3	1.01–5.00	203	13.9	400.4	39.1	22.7	37.8	1.97
4	5.01–10.00	19	1.3	125.8	12.3	10.4	1 <i>7</i> .3	6.62
5	≥ 10.01	10	0.7	149.9	1 <i>4.7</i>	16.6	27.6	14.99
Total		1,459	100	1,022.8	100	60.0	100	0.70

Table 3.10: Morphological classification of glaciers in the Karnali basin in 2010

Glacier type		Glacier number		Glacier area		Estimated ice reserves		Mean area per glacier
		Number	%	km²	%	km³	%	km ²
Mountain	Miscellaneous	2	0.1	0.6	0.1	0.02	0	0.28
	Ice Apron	225	15.4	37.5	3.7	0.9	1.6	0.17
	Cirque	4	0.3	0.3	0	0	0	0.07
	Niche	149	10.2	14.6	1.4	0.3	0.4	0.1
	Basin	1,060	72.7	798.9	<i>7</i> 8.1	41.8	69.6	0.75
Valley Trough		19	1.3	171.1	16.7	1 <i>7</i>	28.3	9
Total		1,459	100	1,023	100	60	100	0.7

Figure 3.14: Elevation range of clean-ice and derbris-covered in the Karnali sub-basins (2010)

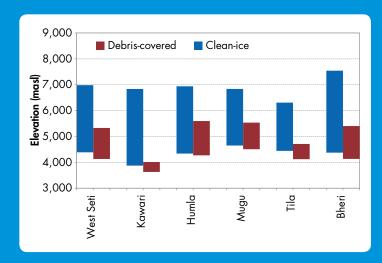
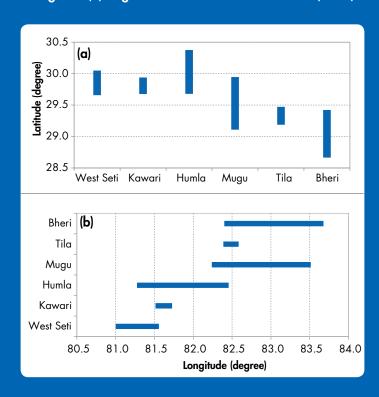
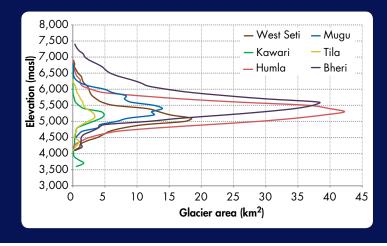



Figure 3.15: Maximum and minimum latitude (a) and longitude (b) of glaciers in the Karnali sub-basins (2010)



in the Bheri sub-basin and the highest DC glacier elevation in the Humla sub-basin. Details of the aspect and slope of glaciers in the Karnali sub-basins are provided in Annex 3 (Figure A3.2).

The range of latitude and longitude in the glaciers in the sub-basins is shown in Figure 3.15. The decreasing latitude from west to east reflects the northwest to southeast line of the Karnali basin.

The morphological classification of the glaciers is summarized in Table 3.10. Details for the subbasins are provided in Annex 2 (Table A2.2). Close to 99% of glaciers (1,440) were mountain type, with 73% mountain basin type and 15% ice apron type. Mountain type glaciers contributed 83% of the total glacier area and 72% of the estimated ice reserves. Only 1% of the glaciers were valley basin type. The

Figure 3.16: The 100 m bin area-elevation distribution of glaciers in the Karnali sub-basins (2010)

average area (9 km²) of the valley basin type glaciers was smaller than in the Koshi and Gandaki basins, but they still contributed 17% of the total glacier area and 28% of the estimated ice reserves.

The area-elevation distribution of the glaciers in the Karnali basin based on a 500 m bin is summarized in Table 3.6, and shown graphically for the individual sub-basins using a 100 m bin in Figure 3.16; the detailed values are provided in Annex 2 (Table A2.3). More than 75% of the glaciated area lay between 5,000 and 6,000 masl, with the highest value for a 100 m bin between 5,300 and 5,400 masl (105 km²). The Bheri sub-basin had the highest band of glaciated area (7,400–7,500 masl) and the Kawari sub-basin the lowest (3,600–3,700 masl).

The Gandaki basin

The Gandaki basin has seven major sub-basins of which five are glaciated – the Kali Gandaki, Seti, Marsyangdi, Budhi Gandaki, and Trishuli. They contained 1,340 glaciers with a total area of 1,665 km² and estimated ice reserves of 135 km³, the highest in all the basins (Table 3.1). The geographical distribution of the glaciers is shown in Figure 3.17. Close to 40% of the glaciers (504) and just under a third of the glaciated area (527 km²) were found in the Kali Gandaki sub-basin, the highest number and area in any sub-basin in Nepal. The mean area of individual glaciers in the basin ranged from 1.05 km² in the Kali Gandaki sub-basin to 1.59 km² in the Seti sub-basin, with a mean value of 1.24 km². The largest glacier in the Gandaki basin (50.2 km²) was G085705E28306N in the Trishuli sub-basin. The second largest, with 43.6 km², was in the Seti sub-basin, the smallest basin in the Gandaki.

The number, area, and estimated ice reserves in each size class of glacier in the individual sub-basins are shown in Table 3.11. Details of the glacier area classes in the individual sub-basins are given in Annex 2 (Table A2.4). Close to half of the glaciers (629) were in class 1b, with an average area of 0.25 km². They contributed 10% of the glacier area and 3% of the estimated ice reserves. In contrast, the 32 glaciers in class 5 (2%) had an average area of 20 km², and contributed 38% of the glacier area and 59% of the estimated ice reserves.

The glacier elevation ranged from 3,282 masl to 8,101 masl (Figure 3.18). The lowest elevation of DC glaciers was 3,753 masl, and of DC glaciers 3,282 masl, both in the Budhi Gandaki sub-basin. The highest elevation of Cl glaciers was 8,101 masl and of DC glaciers 5,705 masl, both in the Kali Gandaki basin. Details of the aspect and slope of glaciers in the Gandaki sub-basins are provided in Annex 3 (Figure A3.3).

The range of latitude and longitude in the glaciers in the sub-basins is shown in Figure 3.19. The decreasing latitude from west to east reflects the northwest to southeast line of the Gandaki basin.

The morphological classification of the glaciers is summarized in Table 3.12. Details for the sub-basins are provided in Annex 2 (Table A2.5). The majority of glaciers (97%) were mountain type, with 60% mountain basin type and 31% ice apron type. Mountain type glaciers contributed 68% of the total glacier area and 52% of the estimated

Figure 3.17: Distribution of glaciers in the Gandaki basin (2010)

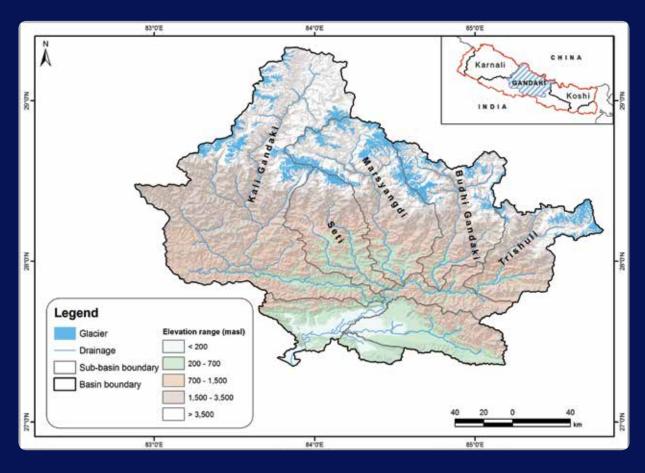


Table 3.11: Glacier area classes in the Gandaki basin (2010)

Class	Area	Glacier	number	Glacie	er area	Estimated ice reserves		Mean area per glacier
	(km²)	Number	%	km²	%	km³	%	km ²
1a	≤ 0.10	199	14.9	13.6	0.8	0.2	0.1	0.07
1b	0.11–0.50	629	46.9	159.5	9.6	4	3	0.25
2	0.51–1.00	195	14.6	139	8.4	5.2	3.8	0.71
3	1.01–5.00	258	19.3	522.5	31.4	29.7	22.1	2.03
4	5.01–10.00	27	2	190.9	11.5	16.2	12.1	7.07
5	≥ 10.01	32	2.4	639	38.4	79.4	58.9	19.97
	Total	1,340	100.0	1,664.4	100	134.8	100	1.24

Table 3.12: Morphological classification of glaciers in the Gandaki basin in 2010

Glacier type		Glacier number		Glacier area		Estimated ice reserves		Mean area per glacier	
		Number	%	km ²	%	km³	%	km ²	
	Miscellaneous	3	0.2	2.2	0.1	0.1	0.1	0.72	
Mountain	Ice Apron	41 <i>7</i>	31.1	140.9	8.5	5.5	4.1	0.34	
	Cirque	8	0.6	1.8	0.1	0.04	0	0.22	
	Niche	81	6	14.3	0.9	0.4	0.3	0.18	
	Basin	797	59.5	973 <i>.</i> 7	58.5	64.6	47.9	1.22	
Valley Trough		34	2.5	531. <i>7</i>	31.9	64.2	47.6	15.64	
Total		1,340	100	1,664	100	134.8	100	1.24	

ice reserves. Less than 3% of the glaciers were valley basin type, but these large glaciers (average area 15.6 km²) contributed 32% of the total glacier area and 48% of the estimated ice reserves.

Only 5% of the glaciers in the Gandaki basin had a DC component, and they contributed less than 8% of the total glacier area. The mean slopes of the Cl and DC glaciers were 33° and 14°, respectively.

The area-elevation distribution of the glaciers in the Gandaki basin based on a 500 m bin is summarized in Table 3.6, and shown graphically for the individual sub-basins using a 100 m bin in Figure 3.20; the detailed values are provided in Annex 2 (Table A2.6). Close to 60% of the glaciated area lay between 5,000 and 6,000 masl, with the highest value for a 100 m bin between 5,800 and 5,900 masl (133.5 km²). The Kali Gandaki sub-basin had the highest elevation band of glaciated area (8,100–8,200 masl) and the Budhi Gandaki sub-basin the lowest (3,200–3,300 masl).

The Koshi basin

The Koshi basin has seven major sub-basins – the Indrawati, Sun Koshi, Tama Koshi, Likhu, Dudh Koshi, Arun, and Tamor. They contained 845 glaciers with a total area of 1,103 km² and estimated ice reserves of 111 km³ (Table 3.1). The geographical distribution of the glaciers is shown in Figure 3.21. One-third of the glaciers (287) and slightly more than a third of the glaciated area (391 km²) were found within the Dudh Koshi sub-basin. The mean area of individual glaciers in the basin ranged from 0.44 km² in the Indrawati sub-basin to 1.47 km² in the Tamor sub-basin, with a mean value of 1.30 km².

The number, area, and estimated ice reserves in each size class of glacier are shown in Table 3.13. Details of the glacier area classes in the individual sub-basins are given in Annex 2 (Table A2.7). Close to half of the glaciers (394) were in class 1b, with an average area of 0.25 km². They contributed 9% of the glacier area and 2.3% of the estimated ice reserves. The 19 glaciers in class 5 (2%) had an average area of 28.9 km², and contributed 50% of the glacier area and 73% of the estimated ice reserves. The Dudh Koshi sub-basin contained the largest glacier in Nepal, the Ngojumba glacier, with an area of 78.7 km².

The glacier elevation ranged from 4,040 masl to 8,400 masl (448 m below the top of Mount Everest)

Figure 3.18: Elevation range of clean-ice and debris-covered glaciers in the Gandaki sub-basins (2010)

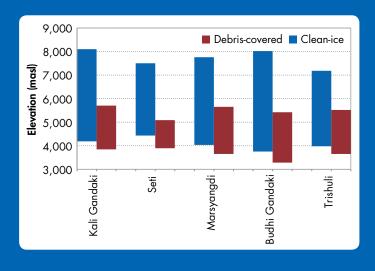


Figure 3.19: Maximum and minimum latitude (a) and longitude (b) of glaciers in the Gandaki sub-basins (2010)

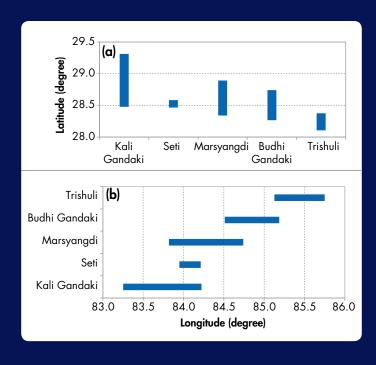
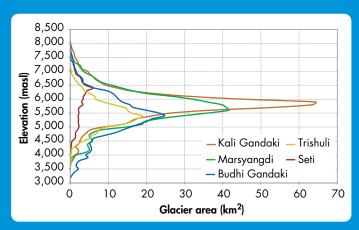



Figure 3.20: The 100 m bin area-elevation distribution of glaciers in the Gandaki sub-basins (2010)

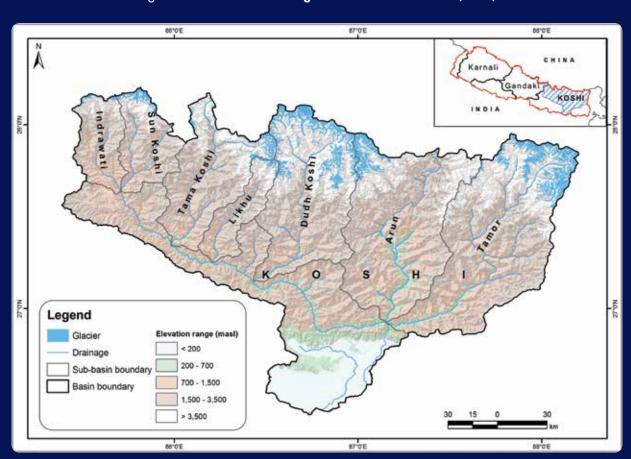


Figure 3.21: Distribution of glaciers in the Koshi basin (2010)

Table 3.13: Glacier area classes in the Koshi basin (2010)

Class	Area	Glacier number		Glacier area		Estimated ice reserves		Mean area per glacier
	(km²)	Number	%	km²	%	km³	%	km²
1a	≤ 0.10	181	21.4	11.2	1	0.1	0.1	0.06
1b	0.11–0.50	394	46.6	99.1	9	2.5	2.3	0.25
2	0.51–1.00	110	13	77.5	7	2.9	2.6	0.70
3	1.01–5.00	12 <i>7</i>	15	265.2	24.1	15.3	13.8	2.09
4	5.01–10.00	14	1.7	101.9	9.2	8.7	7.9	7.28
5	≥ 10.01	19	2.3	548.1	49.7	81.1	<i>7</i> 3.3	28.85
Total		845	100.0	1,102.7	100.0	110.7	100.0	1.30

(Figure 3.22). The lowest elevation of clean-ice glaciers was 4,136 masl, and of DC glaciers 4,047 masl, both in the Sun Koshi sub-basin. Details of the aspect and slope of glaciers in the Karnali sub-basins are provided in Annex 3 (Figure A3.4).

The range of latitude and longitude in the glaciers in the sub-basins is shown in Figure 3.23. The decreasing latitude from west to east reflects the northwest to southeast line of the Koshi basin. The sub-basins with a greater number of glaciers generally had a wider range of latitude and longitude of glacier area.

The morphological classification of the glaciers is summarized in Table 3.14. Details for the sub-basins are provided in Annex 2 (Table A2.8). The majority of glaciers (94%) were mountain type, with 54% mountain basin type and 29% ice apron type. Mountain type glaciers contributed 38% of the total glacier area and 17% of the estimated ice reserves. Less than 6% of the glaciers were valley basin type, but these large glaciers (average area 14.2 km²) contributed 62% of the total glacier area and 83% of the estimated ice reserves.

Figure 3.22: Elevation range of clean-ice and debriscovered glaciers in the Koshi sub-basins (2010)

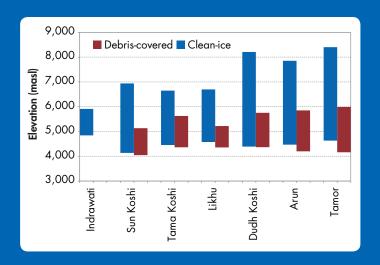
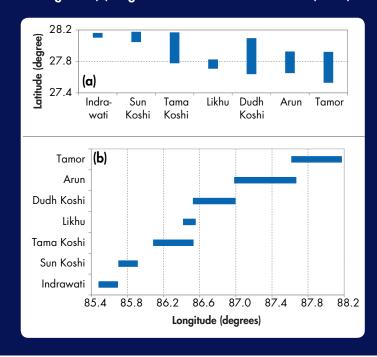
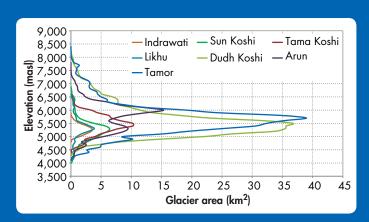


Figure 3.23: Maximum and minimum latitude (a) and longitude (b) of glaciers in the Koshi sub-basins (2010)




Table 3.14: Morphological classification of glaciers in the Koshi basin (2010)

G	lacier type	Glacier	number	Glacie	er area	Estimated i	ce reserves	Mean area per glacier
		Number	%	km²	%	km³	%	km²
	Miscellaneous	13	1.5	5.4	0.5	0.2	0.2	0.42
	Ice Apron	242	28.6	55.1	5	1.6	1.5	0.23
Mountain	Cirque	10	1.2	1.5	0.1	0.03	0	0.15
	Niche	80	9.5	10.4	0.9	0.2	0.2	0.13
	Basin	452	53.5	347.9	31.6	16.9	15.2	0.77
Valley	Trough	48	5.7	682.3	61.9	91. <i>7</i>	% 0.2 1.5 0 0.2	14.21
	Total	845	100	1,103	100	110.6	100	1.3

Close to 90% of the glaciers in the Koshi basin were Cl type, but DC type glaciers contributed close to 20% (216.7 km²) of the glacier area. The mean slopes of the Cl and DC glaciers were 28° and 14°, respectively. The Dudh Koshi and Tamor sub-basins contained the greatest number of DC glaciers, whereas the Indrawati sub-basin contained no valley or other DC type glaciers (Table 3.1). Valley glaciers contributed more than 50% of the total glacierized area in the Dudh Koshi and Tamor sub-basins.

The area-elevation distribution of the glaciers in the Koshi basin based on a 500 m bin is summarized in Table 3.6 and shown graphically for the individual sub-basins using a 100 m bin in Figure 3.24; the detailed values are provided in Annex 2 (Table A2.9).

Figure 3.24: The 100 m bin area-elevation distribution of glaciers in the Koshi sub-basins (2010)

Almost 70% of the glaciated area lay between 5,000 and 6,000 masl, with the highest value for a 100 m bin between 5,400 and 5,500 masl (96.6 km²). The Tamor sub-basin had the highest band of glaciated area (8,400–8,500 masl) and the Sun Koshi sub-basin the lowest (4,000–4,100 masl).


Discussion

The results provide a comprehensive description of the status of Nepal's glaciers in 2010. The Landsat images used were from a narrow time frame, 2009 to 2011, and the consistent approach used means that this dataset now provides a reliable baseline for comparison and identification of changes over time.

Some interesting points were noted from the comparison of the status in the individual basins and sub-basins as follows.

The number of glaciers in the Karnali basin was high compared to the number in the Koshi and Gandaki basins, but the area and ice reserves were lower. This is because there are fewer valley glaciers than in the other basins; valley glaciers generally contribute a much larger area and ice reserves. Similarly, within the Koshi basin, the number and area of glaciers in the Dudh Koshi sub-basin was around three-quarters of those in the Marsyangdi sub-basin, but they had similar levels of ice reserves. Again this is mainly due to the existence of large glaciers in the Dudh Koshi, which contributed higher ice reserves per unit area.

The largest glacier identified in the 2001 ICIMOD inventory was Ktr_gr 193 in the Tamor sub-basin. This glacier has reduced in size and fragmented into two glaciers, and is no longer the largest in Nepal. The present inventory identified the Ngojumba glacier in the Dudh Koshi sub-basin as the largest individual glacier in 2010. However, the area of this glacier was also lower than measured in the 2001 inventory (78.7 km² compared to 92.4 km²).

4 Decadal Glacier Change from 1980 to 2010 in the Nepal Himalayas

Decadal Glacier Change in Nepal

There is considerable evidence that glaciers have been retreating over the past decades in the Nepal Himalayas (Kadota et al. 1997; Fujita et al. 2001; Bolch et al. 2008; Bajracharya et al. 2010, 2011). In order to assess and analyse the changes more accurately, a repeat glacier inventory was prepared for the individual basins and Nepal as a whole for \sim 1980 (1976–1979), 1990, 2000, and 2010. (These designations are approximations used to emphasize the decadal nature of the change, and based on images from a narrow range of years around the given date as explained in Chapter 2).

Number, area, and estimated ice reserves

The glacier number, area, and estimated ice reserves in the individual sub-basins are given in Table 4.1. A summary for the whole of Nepal in the four different time periods is given in Table 4.2, and shown graphically in Figure 4.1. The number of glaciers increased by 11% (378) over the 30-year period with the greatest increase between ~1980 and 1990. The glacier area decreased by 24% (1,266 km²) and the estimated ice reserves by 29% (129 km³), again with the greatest change between ~1980 and 1990. The overall glacier area decreased from 3.6% of the total land area of Nepal to 2.6%. Although the rate of loss of area was the same between 1990 and 2000 and 2000 and 2010, the rate of loss of ice reserves increased over this period.

Glacier area classes, aspect, slope, and morphological type

The status and change in glacier area classes, aspect, slope and morphological type in the glaciers in Nepal

for the whole period ~1980 to 2010 are summarized in Table 4.3. Details for the individual years are provided in Annex 2 (Tables A2.10–A2.13).

The changes in the number and area of glaciers within the different size classes are shown in Table 4.3; details for the individual years are provided in Annex 2 (Table A2.10). Briefly, the number of glaciers in the smallest class 1a increased in all decades; in the next smallest class 1b they increased in the first two decades but decreased between 2000 and 2010. In all larger classes, the number of glaciers decreased in all decades.

Glaciers facing in all directions can be found in Nepal, but the majority have a southerly aspect. The changes in the aspect of glaciers are shown in Table 4.3; details for the individual years are provided in Annex 2 (Table A2.11). Briefly, the number of glaciers increased noticeably for all aspects, apart from southeast where numbers decreased markedly, and south, where the increase was very small. In contrast, the glacial area decreased for all aspects except north and northwest, which showed small increases, with the greatest losses for the south aspect.

Figure 4.1: Glacier number, area, and estimated ice reserves in Nepal in ~1980, 1990, 2000, and 2010

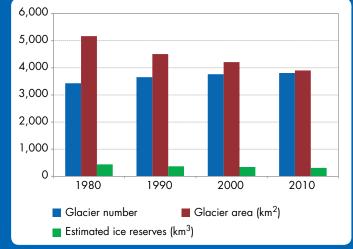


Table 4.1: Status and change of glaciers in the individual basins and sub-basins in ~1980, 1990, 2000 and 2010

			Glacier number	number			Glacier a	Glacier area (km²)		Esti	mated ice	Estimated ice reserves (km³)	km³)	W	inimum ele	Minimum elevation (masl)	<u>-</u>
Basin	Sub-basin	~1980	1990	2000	2010	~1980	1990	2000	2010	~1980	1990	2000	2010	~1980	1990	2000	2010
Mahakali	Mahakali	130	140	151	164	158.5	134.6	120.3	112.5	10.91	8.84	7.81	6.97	3,627	3,657	3,684	3,695
	West Seti	236	248	259	270	210.7	191.1	162.8	146	11.85	10.36	8.5	7.28	3,903	4,032	4,112	4,132
	Kawari	44	46	46	48	42.3	37.2	33.5	29.2	2.33	1.92	1.72	1.45	3,572	3,572	3,599	3,631
	Humla	450	468	474	474	457.4	408.2	374.9	337.9	28.06	24.35	21.92	19.48	4,025	4,130	4,249	4,271
Karnali	Mugu	200	206	206	205	164.2	142.9	130.2	119.2	8.59	7.21	6.44	5.84	4,301	4,350	4,473	4,507
	Tila	50	53	56	61	36.5	33.1	29.3	26.8	1.89	1.7	1.45	1.31	4,061	4,088	4,098	4,124
	Bheri	391	392	400	401	474.2	417.6	382.4	363.8	33.07	28.9	26.35	24.66	4,067	4,071	4,090	4,133
	Sub-Total	1,371	1,416	1,444	1,459	1,385.4	1,230.1	1,113.1	1,022.8	85.79	74.45	96.38	60.04	3,572	3,572	3,599	3,631
	Kali Gandaki	442	480	200	504	677.3	587.3	558.5	527.4	55.32	44.97	41.71	38.9	3,665	3,793	3,819	3,846
	Seti	37	42	47	45	9.88	79.8	75.5	71.6	9.76	8.72	8.42	8.09	3,701	3,701	3,754	3,894
-	Marsyangdi	347	378	385	384	632.8	557.8	535.9	509	53.76	44.68	42.73	39.97	3,589	3,653	3,639	3,651
Gandaki	Budhi Gandaki	224	234	241	242	447	384.6	370.8	348.8	39.05	31.72	30.47	28.53	3,159	3,273	3,274	3,282
	Trishuli	143	160	168	165	279.8	237.9	224.3	207.6	27.68	23	21.53	19.26	3,517	3,600	3,640	3,650
	Sub-Total	1,193	1,294	1,341	1,340	2,125.5	1,847.4	1,764.9	1,664.4	185.57	153.09	144.85	134.75	3,159	3,273	3,274	3,282
	Indrawati	33	37	37	37	23.9	20.1	18.4	16.4	1.17	0.92	0.82	0.73	4,535	4,574	4,757	4,843
	Sun Koshi	30	34	35	39	72.6	62.4	59.7	52.6	6.57	5.37	4.98	4.16	3,873	3,962	3,925	4,047
	Tama Koshi	77	87	86	85	120.3	101.7	94.2	84.4	11.58	9.56	8.84	7.89	4,268	4,316	4,342	4,363
7 .4.5	Likhu	25	26	27	27	32.7	27.2	25.2	23	2.25	1.76	1.58	1.42	4,109	4,117	4,300	4,357
	Dudh Koshi	258	276	282	287	534.4	455.9	426.7	391.2	55.65	46.37	43.2	39.2	4,336	4,367	4,367	4,367
	Arun	84	66	104	108	208.2	177.8	166	149.2	22	18.07	16.75	14.98	4,020	4,079	4,129	4,200
	Tamor	229	247	258	262	506.9	449	422.5	385.9	59.87	51.16	47.75	42.26	4,081	4,116	4,144	4,161
	Sub-Total	736	806	829	845	1,498.9	1,294.2	1,212.6	1,102.6	159.09	133.21	123.92	110.64	3,873	3,962	3,925	4,047
Nepal	Total		3430 3,656	3,765	3,808	5,168.30	4,506.3	4,210.9	3,902.4	3,902.4 441.36	369.59	342.97	312.4	3,159	3,273	3,274	3,282

Table 4.2: Status and change in glaciers in Nepal in ~1980, 1990, 2000, and 2010

Glacier		Decad	e (year)					Decada	l change			
	~1980	1990	2000	2010	~1980)–1990	1990	-2000	2000-	-2010	~1980	-2010
Number	3,430	3,656	3,765	3,808	+226	+7%	+109	+3%	+43	+1%	+378	+11%
Area (km²)	5,168	4,506	4,211	3,902	-662	-13%	-295	-7%	-308	-7%	-1266	-24%
Estimated ice reserves (km³)	441	370	343	312	-72	-16%	-27	-7%	-31	-9%	-129	-29%

Table 4.3: Glacier number and area change ~1980–2010

		Glacier	number	Glacier a	rea (km²)
		2010	Change ~1980–2010	2010	Change ~1980–2010
Area class (k	cm²)				
Class 1	a. ≤ 0.10	<i>7</i> 81	602	50.3	37.2
Class 1k	o. 0.11–0.50	1,739	216	431.4	10.1
Class 2.	0.51–1.00	556	-167	394.2	-11 <i>7</i> .3
Class 3.	1.01–5.00	606	-225	1,234.1	-453
Class 4.	5.01–10.00	64	-32	444.3	-218. <i>7</i>
Class 5.	. ≥ 10.01	62	-16	1,348.1	-524.1
	Total	3,808	378	3,902.4	-1,265.9
Aspect					
North		14	9	1.7	0.9
Northea	ıst	255	84	89.1	-8
East		590	73	466.6	-69.9
Southea	st	634	-54	754.6	-387
South		717	9	1,078.7	-485.2
Southwe	est	773	90	991.3	-198.4
West		561	68	412.6	-133.1
Northwe	est	264	99	107.8	14.8
	Total	3,808	378	3,902.4	-1,265.9
Mean slope ((degree)				
0–10		7	5	18.6	3.5
10–20		625	243	1,031.2	372.4
20–30		1,455	-9	2,056.2	-1090.5
30–40		1,162	20	618.4	-480.7
40–50		464	75	152.1	-72.3
50–60		89	38	24.9	0.8
>60		6	6	1	1
	Total	3,808	378	3,902.4	-1,265.9
Glacier type					
	Miscellaneous	18	1	8.2	-1.8
	Ice Apron	943	137	245.5	-75.3
Mountain	Cirque	24	-7	4.9	-8.4
	Niche	315	8	39.6	-70.6
	Basin	2,396	237	2,163.4	-709.3
Valley trough	1	112	2	1,440.8	-400.5
	Total	3,808	378	3,902.4	-1,265.9

The majority of Nepal's glaciers have mean slopes of $10-50^{\circ}$, and most commonly $20-30^{\circ}$. Only a very few have slopes below 10° or above 60° . The changes in the number and area of glaciers of different slope over the three decades are shown in Table 4.3; the details for the individual years are provided in Annex 2 (Table A2.12). Briefly, between ~ 1980 and 2010, the overall glacier number increased in glaciers of all slopes except $20-30^{\circ}$, where an initial increase was followed by a decrease in the third decade. The glacier number also decreased in glaciers with slopes of $30-40^{\circ}$ in the third decade, but by less than the initial increase. The greatest increase was in glaciers with slopes of $10-20^{\circ}$. In contrast, the glacier area decreased in glaciers with slopes from $20-50^{\circ}$ and increased slightly in the remainder, with the greatest decrease in glaciers with slopes of $20-30^{\circ}$; the loss was highest in the first decade.

The changes in the number and area of glaciers of different type over the three decades are shown in Table 4.3; the details for the individual years are provided in Annex 2 (Table A2.13). Briefly, between \sim 1980 and 2010, the number of glaciers in all types increased, apart from cirque glaciers which showed a small decrease (from 31 to 24), with the greatest change in the first decade. Mountain basin type glaciers showed the greatest increase in number (237, from 2,159 to 2,396), and ice apron type the greatest proportionate increase (17%, from 806 to 943). All types of glacier showed a reduction in area in all decades, with the greatest loss in mountain basin type glaciers (709 km², from 2,872 to 2,163 km²). The large valley type glaciers comprised both simple and compound basins. Two of these glaciers fragmented, one in \sim 1980–1990 and another in 1990–2000. The glacier area loss was also greatest in valley basin glaciers, a total of 400 km² (1,841 to 1,441 km²).

Glacier area-elevation distribution

In 2010, glaciers were observed at elevations from 3,282 to 8,401 masl. The area-elevation distribution of Nepal's glaciers based on a 500 m bin is summarized in Table 4.4, and shown graphically for the individual sub-basins using a 100 m bin in Figure 4.2. Approximately 80% of the glacier area was found in the elevation range 5,000 to 6,500 masl in all decades with the greater part (65%) between 5,000 and 6,000 masl (Table 4.4). The glacier area decreased in all bands in all decades, with the greatest loss in area between 5,000 and 6,000 masl (823 km² between ~1980 and 2010; 24% of the total in the band and 65% of the total loss). Proportionately, the highest loss – one-third of the original area – was observed in the 4,500–5,000 masl band.

The glacier hypsography for the four decades shows the decrease in glacier area. The minimum elevation of a glacier terminus rose from 3,159 to 3,282 masl (Figure 4.2, Table 4.1). After 1990, there were no significant changes in total glacier area at elevations above 5,800 masl (Figure 4.2)

Table 4.4: Area elevation distribution of glaciers in Nepal in ~1980, 1990, 2000, and 2010

Elevation zone (masl) 3,000–3,500 3,500–4,000 4,000–4,500 4,500–5,000 5,000–5,500 6,000–6,500 6,500–7,000 7,000–7,500 7,500–8,000		Glacie	er area					Glacier ar	ea chang	е		
		1000	2000	2010	~1980	-1990	1990-	-2000	2000-	-2010	~1980	-2010
(masi)	~1980	1990	2000	2010	km²	%	km²	%	km²	%	km²	%
3,000–3,500	2.4	1.9	2	1.9	-0.5	-20.8	0.1	5.3	-0.1	-5	-0.5	-20.8
3,500–4,000	26.5	22.9	21.8	20.2	-3.7	-13.6	-1	-4.8	-1.6	-7.3	-6.3	-23.8
4,000–4,500	128	113.5	106.1	97.7	-14.5	-11.3	-7.4	-6.5	-8.5	-7.9	-30.3	-23.7
4,500–5,000	548.5	479.1	412.2	364.1	-69.4	-12.7	-66.9	-14	-48.1	-11. <i>7</i>	-184.4	-33.6
5,000–5,500	1,702.9	1,494.3	1,368.2	1,252.4	-208.6	-12.2	-126.1	-8.4	-115.8	-8.5	-450.5	-26.5
5,500–6,000	1,697.2	1,477.6	1,405.2	1,324.8	-219.6	-12.9	-72.4	-4.9	-80.4	-5.7	-372.4	-21.9
6,000–6,500	733.2	626.8	610.8	574.8	-106.4	-14.5	-16	-2.6	-36	-5.9	-158.4	-21.6
6,500–7,000	230.9	202.9	201.1	189.3	-2	-12.1	-1.8	-0.9	-11.8	-5.9	-41.6	-18
7,000–7,500	78.6	69	67.5	62.8	-9.6	-12.2	-1.5	-2.2	-4.7	-7	-15.8	-20.1
7,500–8,000	18.4	15	14.7	13.3	-3.4	-18.5	-0.3	-2	-1.4	-9.5	-5.1	-27.7
8,000–8,500	1.5	0.8	0.9	0.7	-0.7	-46.7	0.1	12.5	-0.2	-22.2	-0.8	-53.3
Total	5,168.3	4,506.3	4,210.9	3,902.4	-662.0	-12.8	-295.5	-6.6	-308.5	-7.3	-1265.9	-24.5

Figure 4.2: The 100 m bin area-elevation distribution of glaciers in Nepal in ~1980, 1990, 2000, and 2010

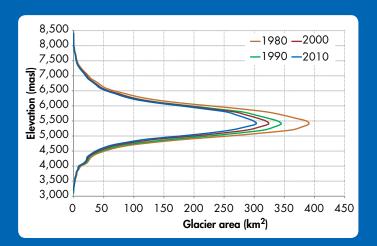
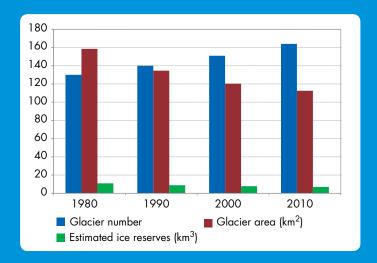



Figure 4.3: Glacier number, area, and estimated ice reserves in the Mahakali basin in 1980, 1990, 2000, and 2010

Decadal Glacier Changes in Individual River Basins

The Mahakali basin

Number, area, and estimated ice reserves

The glacier number, area, and estimated ice reserves in the Mahakali basin in the four different time periods are summarized in Table 4.5 and shown graphically in Figure 4.3. The number of glaciers increased by 26% (34) over the 30-year period, with the greatest increase between 2000 and 2010. The glacier area decreased by 29% (46 km²) and the estimated ice reserves by 36% (4 km³), with the greatest change between ~1980 and 1990.

Glacier area classes

The changes in the number and area of glaciers within the different size classes in the Mahakali basin are given in Annex 2 (Table A2.14). Briefly, the number of glaciers in the smallest class 1a increased in all decades; in the next smallest class 1b they increased overall, but an increase in the first two decades was followed by a decrease between 2000 and 2010. In all larger classes, the number of glaciers remained constant or decreased in all decades, except for class 2, which also showed a small increase between 2000 and 2010, but a greater decrease in the preceding two decades. There were three large class 5 glaciers (≥10 km²) in ~1980, but there was only one by 2010. The total area of class 1a glaciers increased from 1.2 to 2.5 km², whereas the area of all larger classes decreased overall, with losses in area of 70%, 40%, 1%, 18%, and 8% for classes 5, 4, 3, 2 and 1b glaciers, respectively.

Table 4.5: Status and change in glaciers in the Mahakali basin in ~ 1980, 1990, 2000, and 2010

Glacier		Decade	e (year)				Deca	dal glad	cier c	hange		
Glacier	~1980	1990	2000	2010	~1980-	-1990	1990	-2000	200	0–2010	~1980)–2010
Number	130	140	151	164	10	8%	11	8%	13	9%	34	26%
Area (km²)	158	135	120	113	-24	-15%	-14	-11%	-8	-6%	-46	-29%
Estimated ice reserves (km³)	11	9	8	7	-2	-19%	-1	-12%	-1	-11%	-4	-36%

Glacier aspect

The Mahakali basin has an elongated north-south orientation, and the majority of glaciers have a west facing aspect. Details of the number and area of glaciers with different aspects are given in Annex 2 (Table A2.15). Briefly, the number of glaciers increased for all aspects, except north, east, and south, which showed very small reductions. In contrast, the glacial area decreased for all aspects except northwest, which showed a marked increase, with the greatest losses for the west aspect.

Glacier slope

The majority of glaciers in the Mahakali basin had mean slopes between 20° and 50°, and most commonly between 30° and 40°, with the greatest area for slopes of 20–30°. There were no glaciers with slopes of less than 10° or more than 60°. Details of the changes in the number and area of glaciers of different slope over the three decades are provided in Annex 2 (Table A2.16). Briefly, between 1980 and 2010, the overall glacier number remained constant or increased for all ranges of slope, although a few showed losses in individual decades which were offset by increases in other decades. The greatest increase in number was for glaciers with slopes of 40–50°. In contrast, the glacier area decreased for glaciers with slopes from 20–50°, and increased slightly in the remaining slope ranges, with the greatest decrease for glaciers with slopes of 30–40°.

Glacier types

The Mahakali basin contained glaciers of all types except 'miscellaneous'. Details of the changes in the number and area of glaciers of different type over the three decades are provided in Annex 2 (Table A2.17). Briefly, between 1980 and 2010, the number of glaciers of all types increased, except for cirque and niche glaciers, which showed a small decrease, and valley trough type glaciers, which showed no change. Mountain basin type glaciers showed the greatest increase (from 65 to 88). All types of glacier showed a reduction in area in all decades, with the greatest loss in valley basin type glaciers (23 km², from 79 to 56 km²).

Glacier area-elevation distribution

The area-elevation distribution of the glaciers in the Mahakali basin in the different decades based on a 500 m bin is summarized in Table 4.6, and shown graphically using a 100 m bin in Figure 4.4. Glaciated areas were found from 3,695 to 6,850 masl, with more than 90% of the total in the elevation range from 4,000 to 6,000 masl in all decades, the greater part (68%) between 4,500 and 5,500 masl (Table 4.6). Essentially, the glacier area decreased in all bands in all decades, with the greatest loss in area between 5,000 and 5,500 masl (35 km² between 1980 and 2010; 29% of the total in the band and 35% of the total in the basin).

Table 4.6: Area elevation distribution of glaciers in the Mahakali basin in 1980, 1990, 2000, and 2010

	I .				I					•		
et a		Glacie	er area					Glacier ar	ea chang	e		
Elevation zone (masl)	~1980	1990	2000	2010	~1980	-1990	1990-	-2000	2000-	-2010	~1980	-2010
Zone (masi)		kr	n ²		km²	%	km²	%	km²	%	km²	%
3,000–3,500	0	0	0	0	0	0	0	0	0	0	0	0
3,500–4,000	2.3	2	1.9	1.6	-0.3	-13	-0.1	-5	-0.3	-15.8	-0. <i>7</i>	-30.4
4,000–4,500	18.9	1 <i>7</i> .9	1 <i>7</i> .1	15.2	-1.0	-5.3	-0.9	-4.5	-1.8	-11.1	-3. <i>7</i>	-19.6
4,500–5,000	42.1	36.7	30	27	-5.4	-12.8	-6.7	-18.3	-3	-10	-15.1	-35.9
5,000-5,500	56.9	47.2	42.9	40.6	-9. <i>7</i>	-1 <i>7</i>	-4.3	-9.1	-2.3	-5.4	-16.3	-28.6
5,500-6,000	29.1	22.9	20.9	20.7	-6.2	-21.3	-2	-8. <i>7</i>	-0.2	-1	-8.4	-28.9
6,000–6,500	7.8	6.6	6.3	6.1	-1.2	-15.4	-0.3	-4.5	-0.2	-3.2	-1. <i>7</i>	-21.8
6,500–7,000	1.5	1.3	1.2	1.3	-0.2	-13.3	-0.2	-7.7	+0.1	8.3	-0.2	-13.3
7,000–7,500	0	0	0	0	0	0	0	0	0	0	0	0
7,500–8,000	0	0	0	0	0	0	0	0	0	0	0	0
Total	158.5	134.6	120.3	112.5	23.9	-15.1	14.3	-10.6	7.8	-6.5	45.9	-29

The Karnali basin

Number, area, and estimated ice reserves

The glacier number, area, and estimated ice reserves in the Karnali basin in the four different time periods are summarized in Table 4.7 and shown graphically in Figure 4.5. The number of glaciers increased by 6% (88) over the 30-year period, with the greatest increase between 1990 and 2000. The glacier area decreased by 26% (363 km²) and the estimated ice reserves by 30% (26 km³), with the greatest change between 1980 and 1990 and least between 2000 and 2010.

Glacier area classes

Details of the changes in the number and area of glaciers within the different size classes are provided in Annex 2 (Table A2.18). Briefly, the number of glaciers in the smallest class 1a increased in all decades, with the greatest increase between 1990 and 2000, while the number in class 1b only increased between 1980 and 1990, decreasing thereafter but by less than the initial increase. In all larger classes, the number of glaciers decreased (or remained constant) in all decades. The number of class 5 glaciers was reduced by two (from 12 to 10). The total area of class 1a glaciers increased in all decades (from 6.5 to 22.0 km²), whereas the area of all larger classes decreased overall, with losses in area of 7%, 20%, 33%, 40% and 23% for classes 1a, 2, 3, 4, and 5, respectively.

Glacier aspect

Details of the changes in the number and area of glaciers with different aspects are given in Annex 2

(Table A2.19). Briefly, the number of glaciers increased for all aspects, except southeast, which showed a reduction in 1980–1990 and 1990–2000, and south, which showed a reduction in all decades. In contrast, the glacier area decreased for all aspects except north and northwest, which showed a slight increase, with the greatest losses for the southeast and south aspects.

Glacier slope

The majority of glaciers in the Karnali basin had mean slopes between 20° and 40°, with the greatest number and area for slopes of 20–30°. Details of the changes in the number and area of glaciers of different slope over the

Table 4.7: Status and change in glaciers in the Karnali basin in 1980, 1990, 2000, and 2010

Classica		Decade	e (year)				Dec	adal gla	cier cha	nge		
Glacier	~1980	1990	2000	2010	~1980	⊢1990	1990-	-2000	2000-	-2010	~1980	-2010
Number	1,371	1,416	1,444	1,459	+45	+3%	+28	+2%	+15	+1%	+88	+6%
Area (km²)	1,385	1,230	1,113	1,023	-155	-11%	-11 <i>7</i>	-10%	-90	-8%	-363	-26%
Estimated ice reserves (km³)	86	74	66	60	-11	-13%	-8	-11%	-6	-10%	-26	-30%

Figure 4.4: The 100 m bin area-elevation distribution of glaciers in the Mahakali basin in 1980, 1990, 2000, and 2010

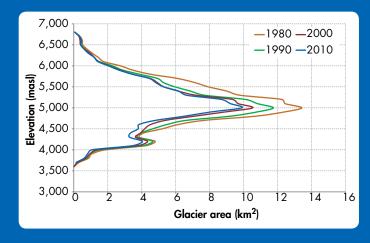


Figure 4.5: Glacier number, area, and estimated ice reserves in the Karnali basin in 1980, 1990, 2000, and 2010

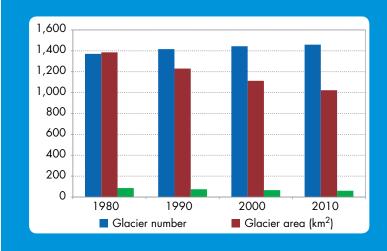
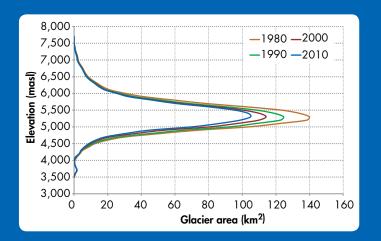



Figure 4.6: The 100 m bin area-elevation distribution of glaciers in the Karnali basin in 1980, 1990, 2000, and 2010

three decades are provided in Annex 2 (Table A2.20). Briefly, between 1980 and 2010, the overall glacier number decreased for glaciers of slope $20-30^{\circ}$ (from 629 to 586) and increased for all other ranges of slope (although a few showed losses in individual decades which were offset by increases in other decades). The greatest increase in number was for glaciers with slopes of $10-20^{\circ}$. In contrast, the glacier area decreased for glaciers with slopes from $20-60^{\circ}$, and increased slightly in the remaining slope ranges, with the greatest decrease for glaciers with slopes of $20-30^{\circ}$ (from 790 to 485 km²). There were no glaciers with slopes of $>60^{\circ}$.

Glacier types

The Karnali basin contains glaciers of all types.

Details of the changes in the number and area of glaciers of different types over the three decades are

provided in Annex 2 (Table A2.21). Briefly, between 1980 and 2010, the number of mountain niche and basin type glaciers increased, whereas the number of all other types remained constant, except cirque glaciers which decreased from five to four. Mountain basin type glaciers showed the greatest increase (from 979 to 1,060). All types of glacier showed a reduction in area in all decades (except cirque glaciers which showed a very small increase between 2000 and 2010), with the greatest losses between 1980 and 1990. Mountain basin type glaciers lost the most area over the 30 years (285 km², from 1,084 to 799 km²) followed by valley type glaciers (32 km², from 203 to 171 km²).

Glacier area-elevation distribution

The area-elevation distribution of the glaciers in the Karnali basin in the different decades based on a 500 m bin is summarized in Table 4.8, and shown graphically using a 100 m bin in Figure 4.6. Glaciated areas were found from 3,631 to 7,541 masl in 2010, with 73% of the total in the elevation range from 5,000 to 6,000 masl in all decades, The glacier area decreased in all bands in all decades, with the greatest loss in area between 5,000 and 5,500 masl (175 km² between 1980 and 2010; 27% of total in band and 48% of total in basin). The reduction in area was most marked between 1980 and 1990.

Table 4.8: Area elevation distribution of glaciers in the Karnali basin in 1980, 1990, 2000, and 2010

		Glacie	er area				G	lacier ar	ea chang	je		
Elevation zone	~1980	1990	2000	2010	~1980	⊢1990	1990-	-2000	2000-	-2010	~1980	-2010
		kı	m ²		km ²	%	km ²	%	km^2	%	km²	%
3,000–3,500	0	0	0	0	0	0	0	0	0	0	0	0
3,500–4,000	4.1	3.9	3.7	3.5	-0.2	-4.9	-0.2	-5.1	-0.2	-5.4	-0.6	-14.6
4,000–4,500	19.9	17.3	15.6	14.3	-2.6	-13.1	-1 <i>.7</i>	-9.8	-1.3	-8.3	-5.6	-28.1
4,500–5,000	187.4	165.9	135.4	114.9	-21.5	-11.5	-30.5	-18.4	-20.5	-15.1	-72.5	-38.7
5,000–5,500	638.3	567.1	511. <i>7</i>	463.4	-71.2	-11.2	-55.4	-9.8	-48.3	-9.4	-174.9	-27.4
5,500–6,000	405.4	355.4	331.1	315.1	-50	-12.3	-24.3	-6.8	-16	-4.8	-90.3	-22.3
6,000–6,500	94.1	86.4	82.8	80.5	<i>-7.7</i>	-8.2	-3.6	-4.2	-2.3	-2.8	-13.6	-14.5
6,500–7,000	28.9	26.9	26.2	25.4	-2	-6.9	-0.7	-2.6	-0.8	-3.1	-3.6	-12.1
7,000–7,500	7	6.9	6.3	5.4	-0.1	-1.4	-0.6	-8.7	-0.9	-14.3	-1.6	-22.9
7,500–8,000	0	0	0	0	0	0	0	0	0	0	0	0
Total	1,385.4	1,230.1	1,113.1	1,022.8	-155.3	-11.2	-117.0	-9.5	-90.3	-8.1	-362.6	-26.2

Table 4.9: Status and change in glaciers in the Gandaki basin in 1980, 1990, 2000, and 2010

Glacier		Decade	(Year)				Dec	adal gla	cier cha	nge		
Glacier	~1980	1990	2000	2010	~1980	-1990	1990-	-2000	2000-	-2010	~1980	-2010
Number	1193	1294	1341	1340	+101	+8%	+47	+4%	-1	-0%	+147	+12%
Area (km²)	2125	1847	1 <i>7</i> 65	1664	-278	-13%	-82	-4%	-100	-6%	-461	-22%
Estimated ice reserves (km³)	186	153	145	135	-32	-18%	-8	-5%	-10	-7%	-51	-27%

The Gandaki basin

Number, area, and estimated ice reserves

The glacier number, area, and estimated ice reserves in the Gandaki basin in the four different time periods are summarized in Table 4.9 and shown graphically in Figure 4.7. The number of glaciers increased by 12% (147) over the 30-year period, with the greatest increase between 2000 and 2010. The glacier area decreased by 22% (461 km²) and the estimated ice reserves by 27% (51 km³), with the greatest change between 1980 and 1990.

Repeat satellite images from the different decades show that the increase in glacier number is associated with the loss of area of mountain glaciers and recession of valley glaciers, and resultant fragmentation. Examples are shown in Figures 4.8 and 4.9.

Glacier area classes

Details of the changes in the number and area of glaciers within the different size classes are provided in Annex 2 (Table A2.22). Briefly, the number of glaciers in the smallest classes 1a and 1b increased in all decades with the greatest increase between 1980 and 1990. In all larger classes, the number of glaciers remained constant or decreased in all decades, except for class 4, which showed a small increase between 1990 and 2000, but a greater decrease in the other two decades. The total area of class 1a and 1b glaciers increased in all decades (from 3.1 to 13.6 km² and 142 to 160 km², respectively) whereas the area of all larger classes decreased overall, with losses in area of 21%, 24%, 27%, and 25% for classes 2, 3, 4, and 5, respectively.

Glacier aspect

Details of the change in the number and area of glaciers with different aspects are given in Annex 2 (Table A2.23). Briefly, the number of glaciers increased for all aspects, except southeast, which showed a reduction in all decades. In contrast, the glacial area decreased for all aspects except north and northwest, which showed a slight increase, with the greatest losses for the southeast and south aspects. There were no glaciers with a north aspect in the 1980s, but two glaciers changed to a mean north aspect in the 1990s, with an additional four in 2000, followed by a loss of four in 2010.

Figure 4.7: Glacier number, area, and estimated ice reserves in the Gandaki basin in 1980, 1990, 2000, and 2010

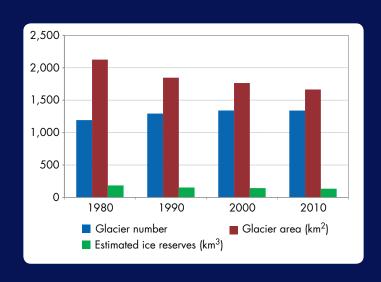


Figure 4.8: The 100 m bin area-elevation distribution of glaciers in the Gandaki basin in 1980, 1990, 2000, and 2010

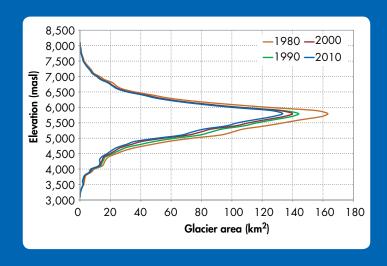
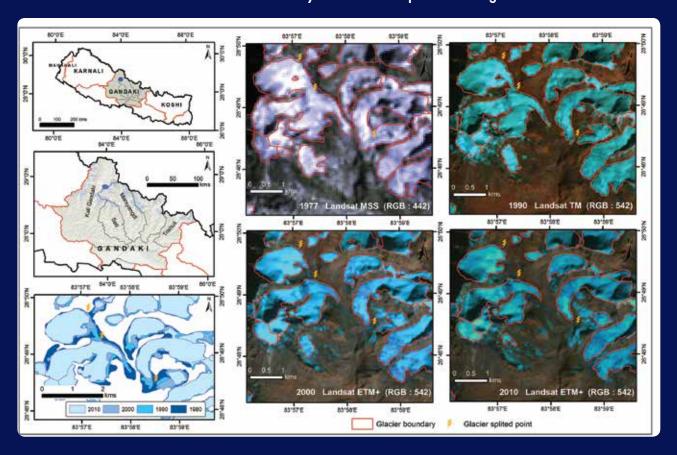



Figure 4.9: Loss of glacial area and subsequent fragmentation of mountain glaciers in the Marsyangdi subbasin of Gandaki basin. Flash symbol shows the position of fragmentation

Glacier slope

The majority of glaciers in the Gandaki basin have mean slopes between 20° and 40° , with the greatest number and area for slopes of 20– 30° . Details of the changes in the number and area of glaciers of different slope over the three decades are provided in Annex 2 (Table A2.24). Briefly, between 1980 and 2010, the overall glacier number increased for all ranges of slope, although a few showed losses in individual decades which were offset by increases in other decades. The greatest increase in number was for glaciers with slopes of 10– 20° . In contrast, the glacier area decreased for glaciers with slopes from 20– 60° , and increased slightly in the remaining slope ranges, with the greatest decrease for glaciers with slopes of 30– 40° . There were no glaciers with slopes of $>60^{\circ}$ in 1980, but by 2010 there were six.

Glacier types

The Gandaki basin contains glaciers of all types. Details of the changes in the number and area of glaciers of different type over the three decades are provided in Annex 2 (Table A2.25). Briefly, between 1980 and 2010, the number of glaciers of all types increased, except for cirque and miscellaneous glaciers, which showed a small decrease, and valley type glaciers, which showed no change. Mountain basin type glaciers showed the greatest increase (from 711 to 797), followed by ice apron type. All types of glacier showed a reduction in area in all decades, with the greatest losses between 1980 and 1990. Mountain basin type glaciers lost the most area over the 30 years (260 km², from 1,234 to 974 km²) followed by valley trough type glaciers (144 km², from 675 to 532 km²).

Glacier area-elevation distribution

The area-elevation distribution of the glaciers in the Gandaki basin in the different decades based on a 500 m bin is summarized in Table 4.9, and shown graphically using a 100 m bin in Figure 4.10. Glaciated areas were found

from 3,282 to 8,101 masl in 2010, with close to 76% of the total in the elevation range from 5,000 to 6,500 masl in all decades, the greater part (33%) between 5,500 and 6,000 masl (Table 4.9). Essentially, the glacier area decreased in all bands in all decades (with some minor exceptions between 1990 and 2000 at the highest altitudes), with the greatest loss in area between 5,500 and 6,000 masl (152 km² between 1980 and 2010; 20% of the total in the band and 33% of the total in the basin). The reduction in area was most marked between 1980 and 1990.

Table 4.9: Area elevation distribution of glaciers in the Gandaki basin in 1980, 1990, 2000, and 2010

		Glacie	er area					Blacier ar	ea chang	е		
Elevation zone	~1980	1990	2000	2010	~1980	-1990	1990-	-2000	2000-	-2010	~1980	-2010
		kr	n ²		km²	%	km²	%	km²	%	km²	%
3,000–3,500	2.4	1.9	2	1.9	-0.5	-20.8	0	5.3	-0.1	-5	-0.5	-20.8
3,500–4,000	20.1	1 <i>7</i>	16.2	15.2	-3.1	-15.4	-0.8	-4.7	-1	-6.2	-4.9	-24.4
4,000–4,500	76	68.6	64.6	59. <i>7</i>	-7.4	-9. <i>7</i>	-4	-5.8	-4.9	<i>-7</i> .6	-16.3	-21.4
4,500–5,000	196.4	167.1	145	130.1	-29.3	-14.9	-22.1	-13.2	-14.9	-10.3	-66.3	-33.8
5,000–5,500	496.1	429.1	394.5	369.4	-67	-13.5	-34.6	-8.1	-25.1	-6.4	-126. <i>7</i>	-25.5
5,500–6,000	<i>7</i> 56.4	660.5	637.8	604.4	-95.9	-12. <i>7</i>	-22.7	-3.4	-33.4	-5.2	-152	-20.1
6,000–6,500	403.8	350.1	349.5	334.2	-53 <i>.7</i>	-13.3	-0.6	-0.2	-15.3	-4.4	-69.6	-17.2
6,500–7,000	125.6	111.8	113.6	108.9	-13.8	-11	+1.8	1.6	-4.7	-4.1	-16. <i>7</i>	-13.3
7,000–7,500	40.5	34.8	35.3	34.6	-5 <i>.7</i>	-14.1	+0.5	1.4	-0.7	-2	-5.9	-14.6
7,500–8,000	7.9	6.2	6.3	5.8	-1 <i>.7</i>	-21.5	+0.1	1.6	-0.5	<i>-7</i> .9	-2.1	-26.6
8,000–8,500	0.2	0.1	0.1	0.1	-0.1	-50	0	0	0	0	-0.1	-50
Total	2,125.5	1,847.4	1,764.9	1,664.4	278.1	-13.1	-82.5	-4.5	-100. 5	-5.7	-461.0	-21.7

Figure 4.10: Recession and subsequent separation of valley glaciers in the Marsyangdi sub-basin of Gandaki basin

The Koshi basin

Number, area, and estimated ice reserves

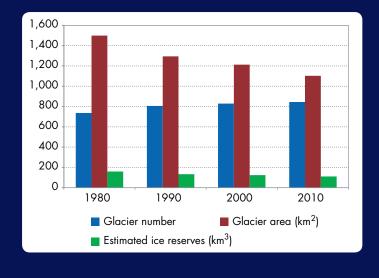
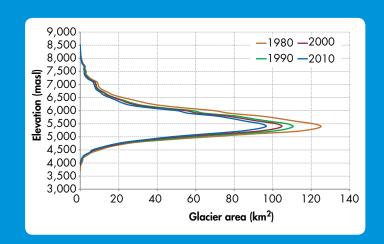
The glacier number, area, and estimated ice reserves in the Koshi basin in the four different time periods are summarized in Table 4.10 and shown graphically in Figure 4.11. The number of glaciers increased by 15% (109) over the 30-year period, with the greatest increase between 1980 and 1990. The glacier area decreased by 26% (396 km²) and the estimated ice reserves by 30% (48 km³), with the greatest change between 1980 and 1990.

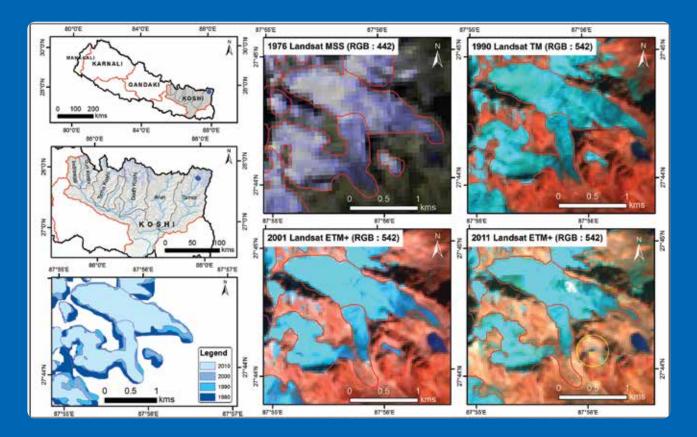
Repeat satellite images from the different decades show that the increase in glacier number is associated with the loss of area of mountain glaciers and resultant fragmentation. Examples are shown in Figures 4.12 and 4.13.

Table 4.10: Status and change in glaciers in the Koshi basin in ~1980, 1990, 2000, and 2010

Glacier		Decade	e (year)				Dec	adal gla	cier cha	nge		
Glacier	~1980	1990	2000	2010	~1980	-1990	1990-	-2000	2000-	-2010	~1980	-2010
Number	736	806	829	845	+70	+10%	+23	+3%	+16	+2%	+109	+15%
Area (km²)	1,499	1,294	1,213	1,103	-205	-14%	-82	-6%	-110	-9%	-396	-26%
Estimated ice reserves (km³)	159	133	124	111	-26	-16%	-9	-7%	-13	-11%	-48	-30%

Figure 4.11: Glacier number, area, and estimated ice reserves in the Koshi basin in 1980, 1990, 2000, and 2010


Figure 4.12: The 100m bin area-elevation distribution of glaciers in the Koshi basin in 1980, 1990, 2000, and 2010

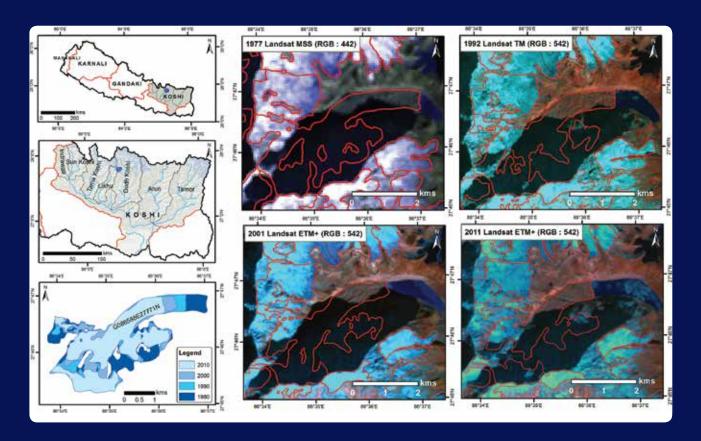
Glacier area classes

Details of the changes in the number and area of glaciers within the different size classes are provided in Annex 2 (Table A2.26). Briefly, the number of glaciers in the smallest classes 1a and 1b increased in all decades with the greatest increase between 1980 and 1990. In all larger classes, the number of glaciers decreased in all decades, except for class 4, which showed a very small increase between 1990 and 2000, but a greater decrease in the other two decades. The total area of class 1a glaciers increased in all decades (from 2.4 to 11.2 km²) and of class 1b glaciers in both decades from 1980 to 2000, with a small decrease thereafter. The area of all larger classes decreased overall, with losses in area of 33%, 25%, 30%, and 30% for classes 2, 3, 4, and 5, respectively, and the greatest losses between 1980 and 1990.

Figure 4.13: Shrinking of glaciers in Tamor sub-basin of Koshi basin. One small mountain glacier shown in the yellow circle has almost disappeared in 2011

Glacier aspect

Details of the changes in the number and area of glaciers with different aspects are given in Annex 2 (Table A2.27). Briefly, the number of glaciers increased for all aspects, except southeast, which showed a reduction between 1990 and 2010. In contrast, the glacial area decreased for all aspects except north and northwest, which showed a slight increase, with the greatest losses for the southwest and south aspects.


Glacier slope

The majority of glaciers in the Koshi basin had mean slopes between 20° and 40° , with the greatest number and area for slopes of $20{\text -}30^{\circ}$. Details of the changes in the number and area of glaciers of different slope over the three decades are provided in Annex 2 (Table A2.28). Briefly, between 1980 and 2010, the overall glacier number increased for all ranges of slope except $30{\text -}40^{\circ}$. The greatest increase in number was for glaciers with slopes of $10{\text -}20^{\circ}$. The glacier area decreased for glaciers with slopes from $20{\text -}60^{\circ}$, with the greatest decrease for glaciers with slopes of $20{\text -}30^{\circ}$. In contrast, the area of glaciers with slopes of $10{\text -}20^{\circ}$ increased markedly. There were no glaciers with slopes of $>60^{\circ}$.

Glacier types

The Koshi basin contains glaciers of all types. Details of the changes in the number and area of glaciers of different type over the three decades are provided in Annex 2 (Table A2.29). Briefly, between 1980 and 2010, the number of glaciers of all types increased, except for niche glaciers, which decreased by one, and cirque and valley basin type glaciers, which showed no change. Ice apron type glaciers showed the greatest increase (from 183 to 243), followed by mountain basin type. All types of glacier showed a reduction in area in all decades, with the exception of miscellaneous glaciers between 1980 and 1990, with the greatest losses between 1980 and 1990. Mountain basin type glaciers lost the most area over the 30 years (151 km², from 496 to 345 km²) followed by valley type glaciers (203 km², from 885 to 682 km²).

Figure 4.14: Decadal glacier area change of the Lumding glacier and adjacent area in Dudh Koshi sub-basin of Koshi basin

Glacier area-elevation distribution

The area-elevation distribution of the glaciers in the Koshi basin in the different decades based on a 500 m bin is summarized in Table 4.11, and shown graphically using a 100 m bin in Figure 4.14. Glaciated areas were found from 4,047 to 8,401 masl in 2010, with more than 80% of the total in the elevation range from 5,000 to 6,500 masl in all decades, the greater part (64%) between 5,000 and 6,000 masl (Table 4.11). Essentially, the glacier area decreased in all bands in all decades (with a minor exception between 1990 and 2000 at the highest altitude), with

Table 4.11: Area elevation distribution of glaciers in the Koshi basin in 1980, 1990, 2000, and 2010

	Glacier area				Glacier area change							
Elevation zone	~1980	1990	2000	2010	~1980	- 1990	1990 -	- 2000	2000 -	- 2010	~1980	- 2010
		kı	m ²		km²	%	km²	%	km²	%	km ²	%
3500– 4000	0.1	0.1	0.1	0	-0.1	0	0	0	-0.1	-100	-0.1	-100
4000– 4500	13.2	9.9	8.9	8.4	-3.3	-25	-1	-10.1	-0.5	-5.6	-4.8	-36.4
4500- 5000	122.5	110	101 <i>.7</i>	92	-12.5	-10.2	-8.3	<i>-7</i> .5	-9 <i>.7</i>	-9.5	-30.5	-24.9
5000- 5500	511. <i>7</i>	451.6	419.2	379	-60.1	-11. <i>7</i>	-32.5	-7.2	-40.2	-9.6	-132 <i>.7</i>	-25.9
5500- 6000	506.2	439.1	415.4	384.6	-67.1	-13.3	-23. <i>7</i>	-5.4	-30.8	-7.4	-121.6	-24
6000- 6500	227.6	183.8	172.2	154	-43.8	-19.2	-11.6	-6.3	-18.2	-10.6	<i>-7</i> 3.6	-32.3
6500-7000	74.9	62.9	60.1	53.7	-12	-16	-2.8	-4.5	-6.4	-10.6	-21.2	-28.3
7000– 7500	31.1	27.3	25.9	22.7	-3.8	-12.2	-1.4	-5.1	-3.2	-12.4	-8.4	-27
7500- 8000	10.5	8.9	8.4	7.5	-1.6	-15.2	-0.5	-5.6	-0.9	-10. <i>7</i>	-3	-28.6
8000- 8500	1.2	0.7	0.8	0.6	-0.5	-41. <i>7</i>	+0.1	14.3	-0.2	-25	-0.6	-50
Total	1,498.9	1,294.2	1,212.6	1,102.6	-204.7	-13.7	-81.6	-6.3	-110	-9.1	396.3	-26.4

the greatest loss in area between 5,000 and 5,500 masl (133 km² between 1980 and 2010; 26% of the total in the band and 34% of the total in the basin). The reduction in area was most marked between 1980 and 1990.

Discussion

The results provide a comprehensive description of the change in status of Nepal's glaciers, both overall and in the individual basins in the period from approximately 1980 to 2010. Although nominally 'decades', it was necessary to use images from other years in order to obtain snow and cloud free views. This may have affected the detailed findings on rate of change, but the trends over the decades are consistent, and the overall change values from 1980 to 2010, prepared using a consistent approach and source, and supported by visual images, can be taken as clear evidence of the changes taking place in Nepal's mountains.

The overall glacier area in Nepal decreased by 24% (1,266 km²) and the estimated ice reserves by 29% (129 km³), while the number of glaciers increased by 11% (378) over the 30-year period. The same pattern was observed in all basins, although with differences reflecting the different elevation, type, and concentration of glaciers in each. The decrease in glacier area accompanied by increase in the number of glaciers is clear evidence of fragmentation as a result of uneven 'shrinking' of individual glaciers. In terms of elevation, the greatest loss of area was in the elevation band 5,000 to 6,000 masl (mainly below 5,800 masl), between 1980 and 1990.

5 Case Study: Climate Change Impact on Glaciers in the Langtang and Imja Sub-basins

Introduction

Glacier recession is one of the key indicators of climate change. Temperature change is considered to be one of the most important factors in glacial retreat, advance, and change in surface area (Raper et al. 2009; Liu et al. 2006; IPCC 2001; Staford et al. 2000), although glacier mass may also be influenced by changes in precipitation, solar radiation, and the presence of surface matter. As the temperature rises, the rate of melting in the lower part of a glacier becomes greater than the rate of accumulation of snow in the upper part. The temperature rise may also lead to a change in precipitation from snowfall to rain, which will also affect the amount of accumulation and rate of melting. As a result of these effects, the glacier will lose mass and may retreat upslope. A recent review estimated the average loss of length of glaciers worldwide to be about 10 m per year (Lemke et al. 2007); with values of 8 to 40 m per year reported in India (Shah et al. 2004; WWF 2005) and 10 to 60 m in the Nepal Himalayas (Yamada et al. 1992; Kadota et al. 2000; Fujita et al. 2001; Bajracharya et al. 2007).

The glaciers in the Nepal Himalayas have shown signs of substantial recession in recent times. To investigate this further, a detailed case study was carried out in the Langtang and Imja valleys of the relationship between average temperature and glacier surface area. The study is described in this chapter. Other factors that affect glacier dynamics such as size, slope, shape, debris cover, and contact with water bodies, as well as energy balance, will be investigated in later studies.

Study Area

The Langtang valley lies within the Trishuli sub-basin of the Gandaki basin in the central region of Nepal, and the Imja valley lies within the Dudh Koshi sub-basin of the Koshi basin in the eastern region. These valleys were considered particularly suitable for this study because they are heavily glacierized and some long-term climatic data from close by points is available from the Department of Hydrology and Meteorology (DHM) of the Government of Nepal. An analysis of decadal glacier change was carried out in both valleys, with detailed analyses of the Yala, Kimjung, and Lirung Glaciers in Langtang valley and Imja, Lhotse, and East Amadablam glaciers in Imja valley. The basin outlets are near the villages of Kyanjing in the Langtang valley and Dingboche in the Imja valley, which have DHM hydrometeorological stations. The annual, seasonal, and decadal mean temperature was calculated from the daily temperature data provided by DHM. The temperature data was correlated with the individual and total glacier area change in each valley.

Glacier Change

Glacier area in the different decades was analysed from the outlines in Landsat images from 1976, 1988, 2000, and 2009 for Langtang valley, and 1979, 1992, 2000 and 2010 for Imja valley. The year 1976 was used as the base year for Langtang valley and 1979 for Imja valley for comparison of the decadal variation in glacier area and elevation of the glacier terminus. The results are summarized in Tables 5.1 and 5.2; the glacier outlines are shown in Figures 5.1 and 5.2.

Figure 5.1: Glaciated area in Langtang valley (inset) and overlay maps of the Lirung, Kimjung, and Yala Glaciers in 1976, 1988, 2000, and 2009

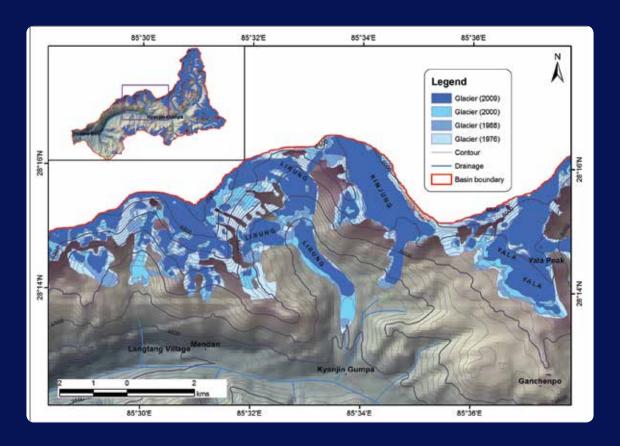


Figure 5.2: Glaciated area in Imja valley and overlay maps of the Lhotse, Imja and East Amadablam Glaciers in Imja valley in 1979, 1992, 2000, and 2010

Table 5.1: Glacier area and elevation from 1976-2009 in Langtang valley

Glacier	Year	1976	1988	2000	2009
	No. of years after base year	0	12	24	33
All .	Glacier area (km²)	191.1	171.3	152.2	142.1
	Cumulative area change (km²)	0	19.8	38.9	49.1
	% area change (from base year 1976)	0	10.4	20.4	25.7
	% area change (from previous observed year)	0	10.4	11.2	6.7
	Maximum elevation (masl)	7,184	7,184	7,184	7,184
	Minimum elevation (masl)	3,997	4,007	4,020	4,112
	Elevation shift (from base year 1976) (m)	0	10	23	115
	Elevation shift (from previous observed year) (m)	0	10	13	92
irung	Glacier area (km²)	10	7.5	7.2	5.3
	Cumulative area change (km²)	0	2.5	2.8	4.7
	% area change (from base year 1976)	0	25.2	27.7	46.6
	% area change (from previous observed year)	0	25.2	3.4	26.1
	Maximum elevation (masl)	<i>7</i> ,160	7,184	7,160	7,160
	Minimum elevation (masl)	3,997	4,007	4,020	4,112
	Elevation shift (from base year 1976) (m)	0	10	23	115
	Elevation shift (from previous observed year) (m)	0	10	13	92
imjung	Glacier area (km²)	5	4.4	4.2	4.1
	Cumulative area change (km²)	0	0.6	0.9	1.0
	% area change (from base year 1976)	0	12	17.5	18.9
	% area change (from previous observed year)	0	12	6.3	1.6
	Maximum elevation (masl)	6,633	6,504	6,337	6,433
	Minimum elevation (masl)	4,313	4,313	4,399	4,426
	Elevation shift (from base year 1976) (m)	0	0	86	113
	Elevation shift (from previous observed year) (m)	0	0	86	27
ala	Glacier area (km²)	5	3.5	3.1	2.4
	Cumulative area change (km²)	0	1.5	1.9	2.6
	% area change (from base year 1976)	0	29.2	38.4	51.4
	% area change (from previous observed year)	0	29.2	13.1	21.1
	Maximum elevation (masl)	6,452	6,522	6,522	6,522
	Minimum elevation (masl)	5,079	5,067	5,111	5,171
	Elevation shift (from base year 1976) (m)	0	-12	32	92
	Elevation shift (from previous observed year) (m)	0	-12	44	60

Note: Changes in maximum elevation reflect the difficulty of differentiating the glacier boundary at the head from snow in some images.

Overall area

The glacier outlines shown in Figures 5.1 and 5.2 show clear evidence of a progressive reduction of the glacier area in both valleys over the 30-year period. The cumulative decrease in glacier area is shown in Figure 5.3. The total glacier area decreased from 191 to 142 km² (26%) in Langtang valley and from 63 to 46 km² (27%) in Imja valley – an average rate of loss of 1.49 km²/yr in Langtang valley and 0.57 km²/yr in Imja valley. Overall, the percentage loss was highest between 1988 and 2000 and lowest between 2000 and 2009 in Langtang valley, and highest between 1979 and 1992 and lowest between 1992 and 2000 in Imja valley.

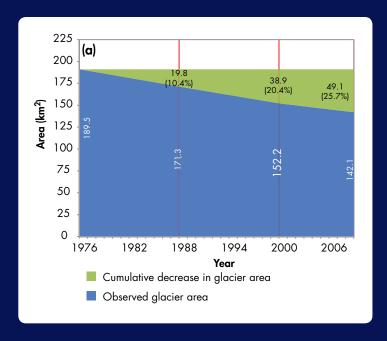
Individual glacier area

The change in individual glacier area in the two valleys is shown in Figure 5.4.

Table 5.2: Glacier area and elevation from 1979-2010 in Imja valley

Glacier	Year	1979	1992	2000	2010
	No. of years after base year	0	13	21	31
All .	Glacier area (km²)	63.2	53.8	51.9	45.6
	Cumulative area change (km²)	0	9.5	11.3	17.6
	% area change (from base year 1979)	0	15	17.9	27.8
	% area change (from previous observed year)	0	15	3.4	12.1
	Maximum elevation (masl)	8,427	8,329	8,329	8,0 <i>57</i>
	Minimum elevation (masl)	4,675	4,689	4,689	4,728
	Elevation shift (from base year 1979) (m)	0	14	14	53
	Elevation shift (from previous observed year) (m)	0	14	0	39
nja	Glacier area (km²)	21	20.1	19.4	17.6
	Cumulative area change (km²)	0	0.9	1.6	3.4
	% area change (from base year 1979)	0	4.4	7.7	16.3
	% area change (from previous observed year)	0	4.4	3.4	9.3
	Maximum elevation (masl)	8,329	8,329	8,329	8,057
	Minimum elevation (masl)	5,002	5,002	5,013	5,019
	Elevation shift (from base year 1979) (m)	0	0	11	1 <i>7</i>
	Elevation shift (from previous observed year) (m)	0	0	11	6
hotse	Glacier area (km²)	14.7	13.1	12.1	10.2
	Cumulative area change (km²)	0	1.6	2.6	4.3
	% area change (from base year 1979)	0	11.2	17.6	30.3
	% area change (from previous observed year)	0	11.2	7.2	15.0
	Maximum elevation (masl)	<i>7</i> ,961	8,039	7,879	7,879
	Minimum elevation (masl)	4,748	4,789	4,796	4,843
	Elevation shift (from base year 1979) (m)	0	41	48	95
	Elevation shift (from previous observed year) (m)	0	41	7	47
ast Amadablam	Glacier area (km²)	2.4	2.2	2	1.9
	Cumulative area change (km²)	0	0.2	0.4	0.4
	% area change (from base year 1979)	0	7.8	15.3	18.8
	% area change (from previous observed year)	0	7.8	8.2	4.
	Maximum elevation (masl)	6,016	6,056	6,056	6,103
	Minimum elevation (masl)	5,051	5,108	5,148	5,1 <i>7</i> 6
	Elevation shift (from base year 1979) (m)	0	57	97	125
	Elevation shift (from previous observed year) (m)	0	<i>57</i>	40	28

Note: Changes in maximum elevation reflect the difficulty of differentiating the glacier boundary at the head from snow in some images.


Langtang valley

The Lirung Glacier is a valley glacier with debris cover in the lower reaches, the Yala Glacier is a mountain apron type glacier with clean-ice, and the Kimjung Glacier is a mountain basin type glacier with clean-ice.

In terms of total amount, the Lirung glacier showed the greatest loss and the Kimjung Glacier the least (Figure 5.4a). But the Yala Glacier showed the highest percentage of glacier area loss with 51%, (from 5.0 km² in 1976 to 2.4 km² in 2009), followed by the Lirung Glacier with 47% (10.0 km² to 5.3 km²) and the Kimjung Glacier with 18.9% (5.0 km² to 4.1 km²) (Table 5.1).

Overall, the percentage loss was highest between 2000 and 2009 for the Lirung Glacier, and 1976 and 1988 for the Kimjung and Yala glaciers.

Figure 5.3: Total glacier area in different years in the (a) Langtang valley and (b) Imja valley

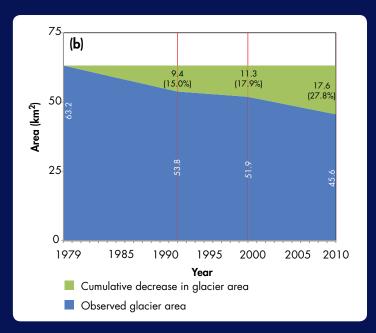
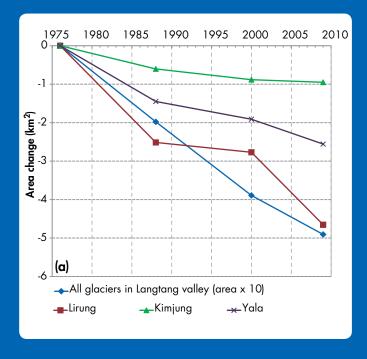
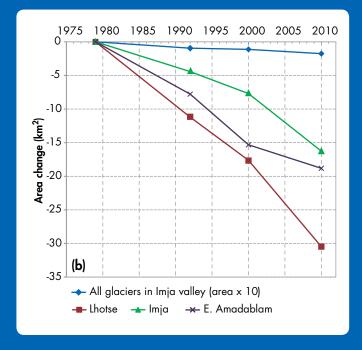




Figure 5.4: Change in area of the selected glaciers in the (a) Langtang valley and (b) Imja valley

Imja valley

The Imja and Lhotse glaciers are valley type glaciers and are debris-covered in the lower parts, whereas the East Amadablam Glacier is a mountain apron type with clean-ice. The Imja Glacier is associated with a moraine-bound lake at its terminus.

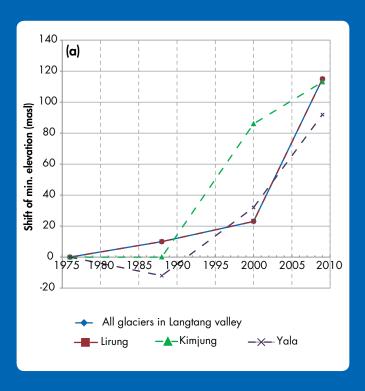
In terms of total amount, the Lhotse Glacier showed the greatest loss and the East Amadablam Glacier the least (Figure 5.4b). The Lhotse Glacier also showed the highest percentage of glacier area loss (31%), from 14.7 km² in

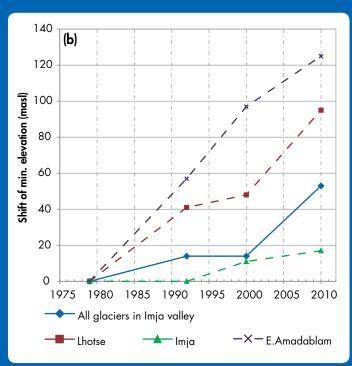
1979 to 10.2 km² in 2010, followed by the East Amadablam Glacier with 19% (2.4 km^2 to 1.9 km^2) and the Imja Glacier with 16% (21.0 km^2 to 17.6 km^2) (Table 5.2).

Overall, the percentage loss was highest between 2000 and 2010 for the Imja and Lhotse glaciers, and between 1992 and 2000 for the East Amadablam Glacier. The high percentage of glacier area loss seen in the Lirung and Yala Glaciers was due to the loss from areas with steep slopes in the elevation range 5,000 to 6,500 masl.

Minimum elevation

The minimum elevation of glaciers in the Langtang valley changed between 1996 and 2009 from 3,997 to 4,112 masl (shift of 115 m); and in the Imja valley between 1979 and 2010, from 4,675 to 4,728 masl (shift of 52 m).


In the Langtang valley, the terminus of the Lirung Glacier, which has the lowest elevation, retreated the most (by 115 m from 3,997 masl in 1976), followed by the Kimjung glacier (by 113 m, from 4,313 masl in 1976), and the Yala glacier (by 92 m from 5,079 masl in 1976) (Table 5.1 and Figure 5.5a).


In the Imja valley, the terminus of the East Amadablam Glacier retreated the most (by 125 m from 5,051 masl in 1979), followed by the Lhotse Glacier (by 95 m from 4,748 masl in 1979), and the Imja Glacier (by 17 m, from 5,002 masl in 1979) (Table 5.2 and Figure 5.5b). Overall the shift of elevation was highest for the East Amadablam glacier between 1979 and 1992 followed by Lhotse between 2000 and 2010 and Imja between 1992 and 2000.

Climate

'Climate' refers to the average weather condition in a region over long periods of time ranging from months to years. The World Meteorological Organization (WMO) has defined a standard averaging period of 30 years for computing the climate at a particular location. In addition to average values, climate statistics include data on extremes and variation. The climate of a location may be affected by the presence of mountains, deserts, vegetation (forests), nearby oceans, and water bodies. "Climate is what you expect and weather is what you get" indicates the difference between the climate and actual day-to-day weather at a place.

Figure 5.5: Change in minimum elevation of the selected glaciers in the (a) Langtang valley and (b) Imja valley

The most important climate parameters are temperature and precipitation. The case study analysis looked at yearly and seasonal temperature and precipitation data for 1988 to 2008. Four seasons were defined: winter (December previous year – February), pre-monsoon (March–May), monsoon (June–September), and post-monsoon (October–November).

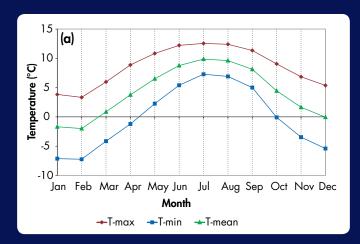
Monthly temperature data for the period 1988–2008 were obtained from DHM for Kyanjing station in Langtang valley and Dingboche station in Khumbu valley at the confluence with the Imja valley, and monthly rainfall data for the period 1995–2008 for the Kyanjing station. The rainfall data for Khumbu were incomplete and could not be used for analysis. Kyanjing station (3,920 masl) in the Langtang valley and Dingboche station (4,400 masl) in the Khumbu valley are the only stations in Nepal with temperature data for 21 years. Missing values were interpolated and extrapolated using numerical methods, e.g., average and linear trends, data from previous periods, and data patterns. Data gaps were also filled using data from automatic and semi-automatic weather stations in the same area.

Temperature

Temperature analysis

The average monthly temperatures in Langtang and Khumbu over the period 1988–2008 are given in Table 5.3 and shown graphically in Figure 5.6.

The average monthly temperature distribution pattern is similar in the two areas but between 3.0 and 4.7°C higher in Langtang valley than in Imja valley in different months. The average monthly mean temperature reaches a maximum during July, is lowest in February, and remains below 10°C throughout the year at both stations.


The average monthly maximum temperature is below 13°C in Langtang and 9°C in Khumbu, and the average monthly minimum temperature is above -2.0°C in Langtang and -6.0°C in Khumbu. The average monthly maximum temperature remains above freezing throughout the year in Langtang, but drops below freezing in February in Khumbu, while the average monthly minimum temperature remains below freezing from October to April in Langtang and from October to May in Khumbu, only rising above zero during the four months of the monsoon season.

In terms of seasons, the monsoon is the warmest season; and winter is the coldest season at both the stations, but the average monthly mean temperature is below zero in all seasons except the monsoon in Khumbu (4,355 masl) and it is only below zero in the winter season in Langtang (3,920 masl) (Figure 5.7).

Temperature change

The mean annual temperature in Nepal from 1975 to 2005 has been reported to be increasing at a rate of 0.04°C/year (Baidya et al. 2007). The rate varies from place to place and season to season; in general it is higher at higher elevations and lower in the southern plains. The rate of increase in average seasonal and annual mean temperature between 1998 and 2008 in Langtang and Khumbu is shown in Figure 5.8. Overall, the average annual mean temperature increased by 0.12°C/year at the

Figure 5.6: Average monthly temperature in (a) Langtang and (b) Khumbu (1988–2008)

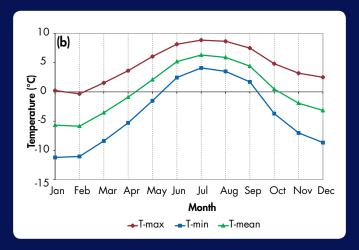


Table 5.3: Average monthly maximum, minimum, and mean temperatures in Langtang and Khumbu (1988–2008)

Temperature	Wi	nter	Pr	e-monsoc	on	Monsoon			Post-monsoon		Winter	
(°C)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Langtang	Langtang											
Tmax	3.8	3.3	6	8.9	10.8	12.2	12.5	12.4	11.3	9.0	6.8	5.4
Tmin	<i>-7</i> .1	-7.2	-4.1	-1.2	2.3	5.4	7.3	6.9	5	-0.1	-3.5	-5.4
Tmean	-1 <i>.7</i>	-2	0.9	3.8	6.5	8.8	9.9	9.6	8.1	4.5	1.7	-0.1
Khumbu	Khumbu											
Tmax	0.2	-0.3	1.5	3.6	6	8.1	8.8	8.7	7.5	4.8	3.2	2.5
Tmin	-11.2	-11	-8.4	-5.3	-1.5	2.4	4.1	3.5	1. <i>7</i>	-3.7	-7	-8.7
Tmean	-5.7	-5.9	-3.6	-0.9	2.1	5.2	6.3	5.9	4.4	0.5	-1.9	-3.2

Figure 5.7: Seasonal mean temperature in Langtang and Khumbu (1988–2008)

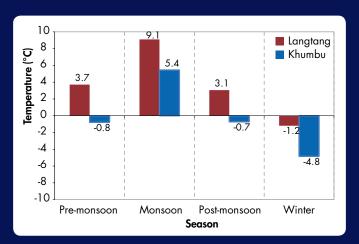
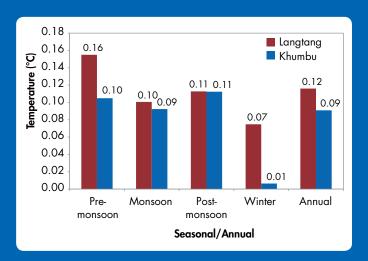



Figure 5.8: Rate of change in average seasonal and annual mean temperatures between 1998 and 2008 at the stations in Langtang and Khumbu

Langtang station and 0.09°C/year at the Khumbu station (Figure 5.8), considerably higher than reported for Nepal overall. The increase was observed in all seasons, but was highest in the pre-monsoon season in Langtang and post-monsoon season in Khumbu.

The average mean, minimum, and maximum temperatures in the two valleys in each year are shown in Figures 5.9 and 5.10; and the average annual increase in Table 5.4. In Langtang the maximum and minimum temperatures increased at almost the same rate, whereas in Khumbu the minimum temperature increased slightly faster than the maximum temperature (Table 5.4).

Table 5.4: Average annual temperature change in Langtang and Khumbu between 1988 and 2008 (°C/yr)

Station	Maximum	Minimum	Mean		
Langtang	0.128	0.124	0.116		
Khumbu	0.093	0.139	0.091		

Time series analysis with multiple period regression of mean monthly temperature was also carried out to determine the patterns of change over different periods. The results are shown in Figure 5.11 (Langtang) and Figure 5.12 (Khumbu). In Langtang, there were at least two distinct temperature periods, 1988–2002 and 2003–2008. The regression lines show that mean monthly temperatures rose at an annual rate of 0.024°C between 1988 and 2002, but showed almost no variation between 2003 and 2008. In Khumbu, the regression line indicates a general rising tendency in mean monthly temperature for the period 1988 to 2008 but the rate was not significant, although the annual mean temperature for the same period shows a distinct rise at a rate of 0.09°C/year (Figure 5.10).

Figure 5.9: Annual average mean, maximum, and minimum temperatures from 1988 to 2008 in Langtang

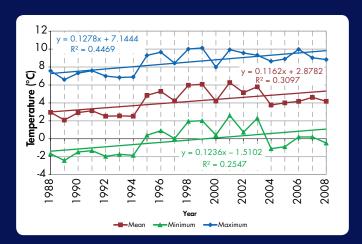


Figure 5.10: Annual average mean, maximum, and minimum temperatures from 1988 to 2008 in Khumbu

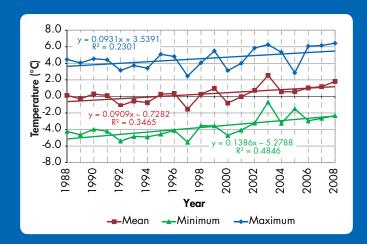


Figure 5.11: Mean monthly temperature in Langtang, 1988–2008

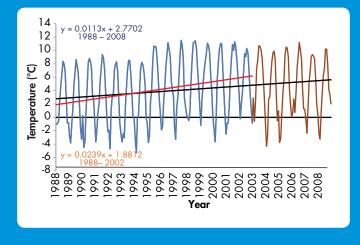
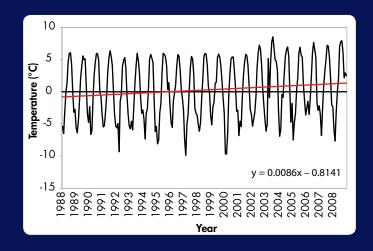



Figure 5.12: **Mean monthly temperature in Khumbu, 1988–2008**

Decadal temperature change analysis

The differences in temperature change in the two decades 1988–1997 and 1998–2007 are shown in Figure 5.13. Warming was greater between 1998 and 2007 than between 1988 and 1997 in both locations and in all seasons, with the greatest differences observed in the pre-monsoon season and the least in the winter season.

The annual mean temperature in each year and each decade at the two stations is shown in Figure 5.14. The decadal mean temperature increased from 3.3 to 5.0° C in Langtang and from -0.3 to 0.7° C in Khumbu between the decades 1988–1997 and 1998–2007. Statistical analysis was carried out to identify the significance of any differences in the two decadal series at each of the two locations using a paired-sample T test. In Langtang, the difference between the decadal mean temperatures of the series in the two decades was significant at p=0.014<0.05, with a 95% confidence interval between 0.44°C and 2.98°C. In Khumbu, the difference was significant at p=0.036<0.05, with a 95% confidence interval between 0.08°C and 1.96°C. The total glacier area in the Langtang and Imja valleys in 1998, 2000, and 2009 is also shown for comparison (Tables 5.1, 5.2).

Figure 5.13: Mean difference in average seasonal temperature between 1988–1997 and 1998–2007 in Langtang and Khumbu

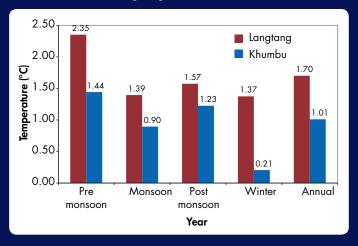
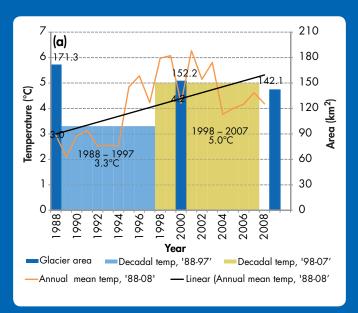
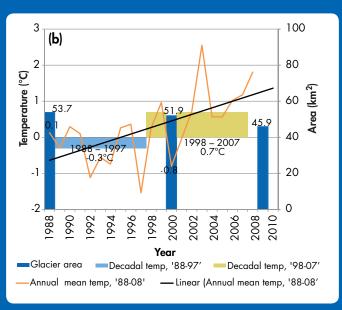
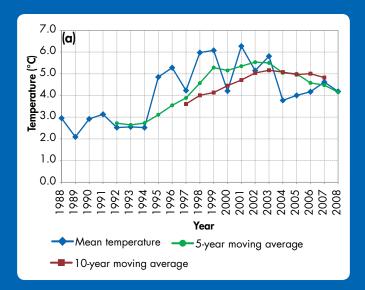




Figure 5.14: Average decadal and annual mean temperature in (a) Langtang and (b) Khumbu

Moving average analysis

A moving average analysis was performed to identify changes in the overall long-term trend. Annual fiveand ten-year moving averages of mean, minimum, and maximum temperature were calculated in order to smooth out short-term fluctuations and visualize the long-term temperature trend. The results are shown in Figures 5.15, 5.16, and 5.17. The five-year moving average showed a greater change in annual mean temperature than the ten-year moving average in both regions. Langtang showed a tendency towards a decreasing mean temperature after 2004, whereas Khumbu showed an increasing trend, especially in the ten-year moving average (Figure 5.15). The five- and ten-year moving averages of minimum temperature showed almost the same pattern as those of the mean temperature in both regions, except in Khumbu where there was a noticeable increase in minimum temperature for both the five- and tenyear moving averages after 1997 (Figure 5.16). The changes in maximum temperature were lower than the changes in minimum temperature in both regions (Figure 5.17), with values in the Langtang region relatively stable after 2004, but an increasing tendency in the Khumbu region.


Overall the results indicate that the increasing average temperature in both regions is the result of a continuing rise in both maximum and minimum temperature; the five-year and ten-year moving averages showed the rise in minimum temperature to be significant in both regions.

Rainfall analysis

In the Nepal Himalayas, rainfall shows large month-to-month, season-to-season, and year-to-year variations. The summer monsoon from June to September is the dominant rain bearing system. More than 80% of annual rainfall occurs in this period, with a general decrease in amount from east to west and south to northwest (Bookhagen and Burbank 2010; Shrestha et al. 2000). In winter, rainfall generally decreases from west to east. During the pre- and postmonsoon seasons, rainfall is usually of convective type and localized. Changes in rainfall were analysed for the Langtang station from 1995 to 2008. (There were gaps in the data for 1988 to 1994, so these years were not included in the analysis.)

The average annual rainfall in Langtang over the period 1995 to 2008 was 805 mm. The percentage average monthly and seasonal contribution to the

Figure 5.15: Five and ten-year moving average of mean temperature in (a) Langtang and (b) Khumbu

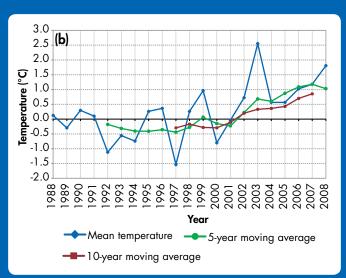
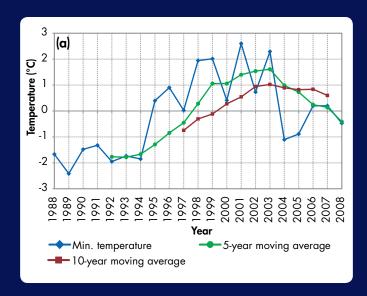



Figure 5.16: Five- and ten-year moving average of minimum temperature in (a) Langtang and (b) Khumbu

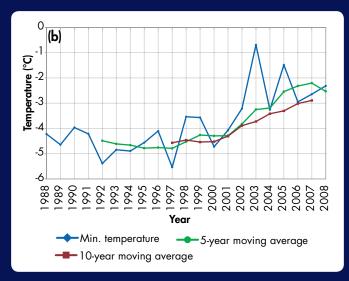
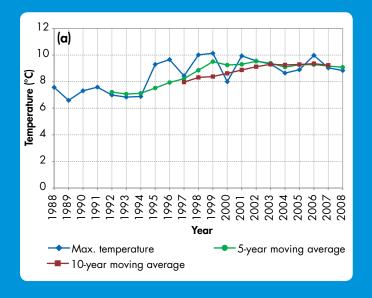



Figure 5.17: Five- and ten-year moving average of maximum temperature in (a) Langtang and (b) Khumbu

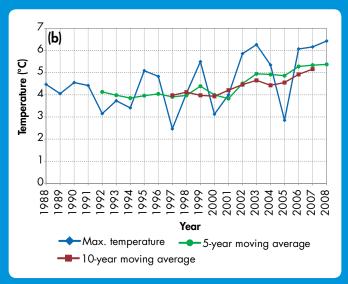
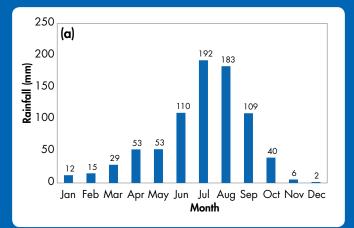



Figure 5.18: Monthly (a) and seasonal (b) average contribution (%) to total annual rainfall in Langtang (1995–2008)

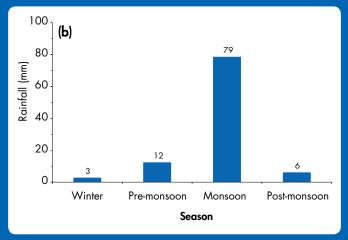
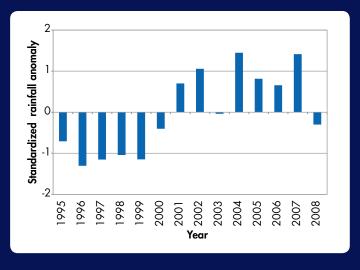



Figure 5.19: Annual total rainfall anomaly in Langtang

total is shown in Figure 5.18. July is the wettest month and December the driest. Close to 80% of the total precipitation fell in the monsoon season (June–September), similar to the value of 77% reported by Immerzeel et al. (2012). Winter was the driest season with only 3% of the total rainfall.

The total annual rainfall anomaly provides information about wet and dry years beyond ± 1 standard deviations. The annual total rainfall anomaly between 1995 and 2008 in Langtang is shown in Figure 5.19. There were four dry years (1996, 1997, 1998, 1999) and three wet years (2002, 2004, 2007).

Regression analysis of total annual rainfall from 1995 to 2008 in Langtang showed an increasing trend of 31 mm/year (Figure 5.20; Table 5.5). This increase is significantly greater than the trend reported from other stations at lower altitude, e.g., 1.9 mm/year at Kathmandu Airport (Baidya et al. 2008). The overall trend showed an increase in pre-monsoon, monsoon, and post-monsoon seasons but a slight decrease in winter (Table 5.5), which is in agreement with the decreasing rainfall trend observed at other stations during the winter season. The monsoon season showed an increase of 24 mm/year. In other words, the wet season (monsoon) is becoming wetter and the dry season (winter) is becoming drier.

The coefficient of variation (CV) was used to study rainfall variability. The coefficient of variation in the different seasons is shown in Figure 5.21. Post-monsoon rainfall showed the greatest variability and monsoon rainfall the least. The variability of winter rainfall was more than double that in the monsoon season.

Table 5.5: Trend in seasonal rainfall in Langtang

Rainfall trend (mm/year)	Winter	Pre- monsoon	Monsoon	Post- monsoon
	-0.4	4.97	23.69	0.98

Discussion

Limitations

The meteorological equipment installed by DHM in the high-altitude stations is semi-automatic (chart driven recorder) with limited manual supervision in the off-season and operates under climatically harsh conditions. Data errors may occur as a result of various problems, for example, malfunction of the instruments, delay in instrument calibration, and failure to change the recorder chart in a timely

Figure 5.20: **Trend in annual total rainfall in Langtang** (1995–2008)

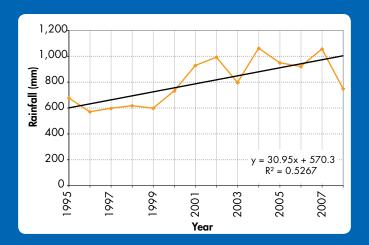
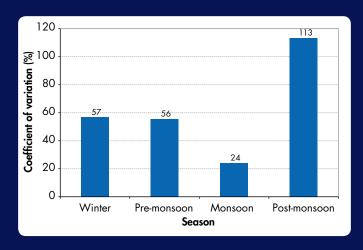



Figure 5.21: Coefficient of variation (CV) of rainfall in different seasons in Langtang (1995–2008)

fashion as a result of access difficulties. The data gaps that result can be filled to some extent through interpolation and extrapolation from other stations, but the associated data error still needs to be studied.

The daily mean temperature data used in this study are averages of the daily maximum and minimum temperatures. Such averages tend to be high and affected by extreme values, and statistically, these mean temperatures may not represent the population mean. Long-term hourly temperature data would be needed to ensure that the daily mean represents the population mean, but at present such data are not available.

Simple linear regression is a tool for analysing trends and provides quantitative information for climatological parameters; however, there are a number of limitations to this technique. Generally, there should be a long data period, especially for short data records that do not follow a normal distribution, since outliers can lead to misleading results in short series. Non-parametric tests such as Mann-Kendal, Run, and Mann-Whitney are normally used if the necessary assumptions cannot be made about a dataset, but the statistical power of these tests is generally lower than for parametric tests. The data records in this study covered a period of 21 years. This is sufficient to justify the use of linear regression, but the statistical results could be improved if longer time series were available.

Changes in glacier area

The total glaciated area showed a loss of just over 25% of the original extent in both valleys in the 30-year study period. However, this change was not homogeneous for all glaciers. The type, size, slope, aspect, elevation, and debris or other cover of a glacier all affect the extent and rate at which it will be affected by changes in climate. The studies of individual glaciers provide an indication of the different response and sensitivity of different glaciers. The six glaciers showed overall area losses ranging from 16 to 51% of the initial area. Overall, the results indicate that low lying small glaciers reduce in size more rapidly than bigger glaciers. Additional ground-based observations also validated that the main area loss for the Imja glacier was at the terminus, and associated with the expansion of the Imja glacial lake. Contact with a glacial lake is another factor that can affect the rate of recession. Such differences need to be studied in more detail in more glaciers to support more precise modelling of future impacts of climate change.

The glaciers also showed a recession in the position of the terminus, by 115 m for the lowest glaciers in Langtang valley, and 53 m for the lowest glaciers in Imja valley. The individual glaciers also showed marked differences in the extent of recession, from 17 m (Imja) to 125 m (East Amadablam). The elevation shift is also affected by a variety of factors including the slope, aspect, initial elevation, type, and cover of the glacier.

Changes in temperature

Meteorological parameters such as temperature and rainfall play an important role in determining glacier changes. However, direct comparisons of change can only be indicative, in view of the fact that other factors also play a role, and that there is a lag time in the response of glaciers to changes in these parameters that varies, among others, with glacier size. Furthermore, the stations that provided the temperature data in this study lay slightly below the minimum elevation of glaciers in the two valleys, and considerably below the bulk of the glaciated area. Although changes in air temperature are likely to follow a similar pattern within a valley, there may be localized effects, and the extent and rate of change may also be affected by elevation. Nevertheless, it is interesting to compare the overall changes in glacier parameters with the trends in meteorological parameters.

The temperature change was investigated over the 21-year period for which continuous data were available (1988 to 2008). There was a considerable fluctuation in average annual temperatures, but regression analysis showed an overall increase in annual mean temperature in Langtang of 4.2°C, with a rate of change of 0.12°C/year, and in Khumbu of 0.3°C; with a rate of change of 0.09°C/year. The overall increase was higher between 1998 and 2007 than between 1988 and 1997, notwithstanding a small downward fluctuation in Langtang after 2004.

Analysis of five and ten-year moving averages indicated that although both the maximum and minimum temperatures showed a rising tendency, only the increase in minimum temperature was significant. An increase in minimum temperatures could have a more dramatic effect on the surroundings than an overall increase in temperatures (Hughes et al. 2007), partly because it is more likely to raise the temperature above the 0°C threshold, thus extending the melting season.

Differences were also observed among the seasons, with an increase in mean temperature in all seasons, but a greater change in the pre-monsoon season, especially in Langtang, and less change in the winter season, especially in Khumbu. However, longer time series are needed to confirm these findings and seasonal changes need to be investigated further.

The general rise in mean temperature in both Langtang and Imja (Khumbu) paralleled the decrease in glacier area and rise in minimum elevation of glacier terminuses. The temperature rise is considered to be the primary factor responsible for glacier retreat. Future studies will consider other factors that affect glacier dynamics, such as size, slope, shape, debris cover, and contact with water bodies, in more detail.

Changes in precipitation

Investigation into changes in precipitation were hindered by the lack of a complete rainfall dataset for the Khumbu region, and a limited data set of only 13 years for the Langtang region. Furthermore, measurements were limited to rainfall and did not include snowfall, so that values are only indicative for precipitation. Notwithstanding these limitations, analysis of the limited data series showed clearly the extent of variation in annual rainfall. Although the length of the data set was too short for identifying trends with any certainty, simple regression analysis indicated the possibility of an overall increase in rainfall, with a greater increase during the monsoon and slight decrease in the winter season. The results provide a baseline for future studies. Precipitation plays an important role in glacier dynamics, both in terms of the total amount of precipitation available for accumulation and in changes in the form of precipitation from snow to rain.

6 Conclusion

Glacier Status in 2010 and Trends Over Time

In this study, a semi-automatic method was applied to develop a comprehensive account of the status of glaciers of Nepal in 2010 together with comparable data for approximately 1980, 1990, and 2000 to enable assessment of changes and trends. In an additional case study, glacier outlines for the four decades in the Langtang and Imja sub-basins in central and eastern Nepal were analysed and compared with decadal temperature change. The attribute parameters were all derived from automatic GIS processes, except for the morphological classification and measurement of glacier length. The methodology is an improved version of methods developed by global initiatives like the World Glacier Monitoring Service (WGMS), Global Land Ice Measurement from Space (GLIMS), and GlobGlacier, thus the results can be used as a basis for comparison at an international level. The major findings were as follows:

- In 2010, a total of 3,808 glaciers were identified with a total area of 3,902 km² and estimated ice reserves of 312 km³. The average area of individual glaciers was 1 km². The Ngojumba glacier in the Dudh Koshi subbasin was the largest single glacier with an area of 79 km².
- About 90% of the glacier area lay between 4,500 and 6,500 masl; with 65% between 5,000 and 6,000 masl.
- The contribution of estimated ice reserves is higher for a large glacier than for the same cumulative area from a number of smaller ones. Thus the estimated ice reserves were higher in basins with larger glaciers, and larger glaciers are the most important reserves of freshwater.
- The total glacier area decreased by 24% between 1977 and 2010, and the estimated ice reserves by 29% (129 km³). The number of glaciers increased by 11%, a result of fragmentation following shrinkage. The lowest losses of glacier area (and in some cases gains) were observed from glaciers with a north or northwest aspect (of which there were very few) and slopes of less than 20°. Mountain basin type and valley glaciers also showed a lower proportional loss of area
- The glaciers receded on average by 38 km² per year.
- The rate of loss of glacial area between ~1980 and 1990 was almost twice that in the subsequent two decades (1990–2000 and 2000–2010). Further study is needed to determine whether this reflects a slowing in the rate of change or an anomalous situation in the first period.
- The average annual mean temperature in the Langtang and Imja (Khumbu) sub-basins rose at an average rate of 0.12°C/year and 0.09°C/year, respectively, between 1988 and 2008. Moving average analysis showed that the rate of increase in average mean minimum temperature was significant and higher than the increase in average mean maximum temperature.

Conclusions

The results show clearly that the glacier area in the Nepal Himalayas is decreasing at a rapid rate, and that individual glaciers are shrinking, retreating, and fragmenting. The changes appear to be linked primarily with a marked rise in average temperature associated with global climate change. The extent to which changes in precipitation play a role, including total amount, seasonal distribution, and change from snowfall to rainfall, is not yet known. The changes have a number of implications. The high Himalayan region contains important freshwater reserves in the form of glacier ice, and glacial shrinkage will have an impact on the long-term availability of freshwater from these reserves. Initially, increased melting of glaciers might lead to an increase in glacial runoff and thus river flow lasting some decades, but this will be followed in the long term by a reduction. Furthermore, glacial recession can be associated with the formation and expansion of glacial lakes below the retreating terminus, with the associated risk of a glacial lake outburst flood (GLOF); continued recession may lead to an increase in the number of glacial lakes and in the frequency of GLOF events. Finally, the cryosphere also plays a significant role in regional climate regulation, and change in the glacial area may not only be affected by, but also have a long-term impact on, the regional climate.

In order to mitigate the impacts and plan for adaptation, it is important to have clear information on the present situation and rate of change. However, although the overall trends are clear, there is considerable variation in the susceptibility to change of individual glaciers, related to such factors as type, size, aspect, slope, elevation, proximity to water bodies, and the presence of thick or thin layers of debris and other material. Detailed information on these characteristics and variations in response are needed to support development of more accurate projections of future change under different climate scenarios using glacier modelling. The patterns are complex, but the results did indicate some of the differences.

Small glaciers, low elevation glaciers, and low sloping glaciers – especially clean-ice type – may be more significantly affected by climate change. Small glaciers have a low thermal mass for buffering change, and low slope glaciers are more vulnerable because a small rise in elevation of the thermal equilibrium will affect a large area of the glacier. Not all small glaciers are vulnerable to disappearance, however, because they commonly exist in heavily shadowed cirque basins, and many are close to steep slopes and receive abundant snow avalanches and wind-blown snow in addition to direct snowfall. As small glaciers retreat closer to the steepest basin slopes, these contributions may increase and make the final disappearance a very slow process. Similarly, not all low slope glaciers are equally vulnerable. Debris-covered glaciers, which tend to have lower slopes, can be insulated from warming by the debris cover and respond more slowly to change unless a lake forms at the terminus. Although some of the smaller glaciers present in 1980 had disappeared by 2010, the actual number of small glaciers increased as a result of shrinkage and fragmentation of previously larger glaciers. The glacier area and estimated ice reserves contributed by small glaciers are comparatively small, but as these glaciers tend to be more sensitive to climate change they may play a more important role proportionately in the loss of ice reserves.

The separate information for clean-ice and debris-covered glaciers will serve as an important parameter in climate change models. Clean-ice glaciers respond to climate warming on a shorter timescale than debris-covered glaciers, as a result of the thermal insulation provided by the debris in debris-covered glaciers. As climate warming and net ablation proceed, the remaining glacier area is likely to have an increased proportion of debris-covered area. Net ablation also causes transition of some relatively clean-ice areas into debris-covered ice as debris accumulates. Furthermore, as glaciers thin, lateral moraines can destabilize and collpase onto them, adding more debris to the surface. This means that an increase in the percentage of debris-covered glaciers in an area is likely to be an indicator of climate change. The debris-covered and clean-ice area was only differentiated in the images for 2010. In the future, additional analysis will show whether the proportion of debris-covered area is in fact increasing.

Better and longer series of temperature and precipitation data at higher altitudes are needed in order to analyse the causes of the changes in glacier extent in more detail. Long-term hourly measurements of temperature at higher elevations are needed to enable correlation with glacier change, together with measurements of rain and snowfall. The greatest amount of precipitation in the Nepal Himalayas falls during the monsoon and pre-monsoon seasons. At higher elevations this precipitation is in the form of snow and contributes to glacial accumulation. Changes in both total precipitation and seasonal distribution may affect the snow available to glaciers for accumulation. The increase in temperature may also result in precipitation falling as rain at higher altitudes than previously. This will affect the glaciers in two ways: less snow will be available to add to the ice mass, and the rain will increase the melting rate of the existing ice. Long-term series are needed as rainfall patterns show considerable variation in individual years.

Recommendations

The lack of data on Nepal's glaciers is hindering efforts to project future scenarios and develop plans for mitigation and adaption. To some extent this can be addressed using satellite imagery, but selected ground truthing and good quality mass balance measurements are needed from a range of different glaciers to facilitate data interpretation. The following are recommended for assessments using satellite imagery.

- Small and medium-sized glaciers should be mapped and monitored regularly using high-resolution satellite images.
- A repeat inventory of glaciers of Nepal is recommended at intervals of five years to capture the ongoing change.
- Names of important glaciers should be mentioned in published data in addition to the GLIMS ID code to aid understanding by non-specialists concerned with local impacts.

On-the-job training in glacier mapping and monitoring using satellite images should be provided as a matter
of urgency to the technical staff in Nepalese partner institutes so as to improve the capacity for mapping and
monitoring of glaciers, and thus enable regular monitoring of 'hot spot' areas with rapidly retreating glaciers.

The daily mean temperature data used in this study are averages of the maximum and minimum temperatures and tend to be high and affected by extreme values. Statistically, these mean temperatures may not represent the population mean. Long-term hourly temperature data are needed to ensure that the daily mean represents the population mean, but at present such data are not available.

- The hydrometeorological stations should be upgraded with automated data logging systems.
- A representative network of high-altitude hydrometeorological stations should be established.
- The existing high-altitude stations should be made fully functional to ensure the availability of good quality of data.

Future Outlook

The use of advanced remote sensing and GIS tools and techniques enables rapid delivery of glacier data which enable assessment of glacier status over a wide area, as well as detailed analysis of individual changes. The present study will contribute to an understanding of the status and changes of glaciers in the Nepal Himalayas over the past 33 years; the data will be available for download for further analysis on ICIMOD's website (http://apps.geoportal:icimod.org/nepalglaciers). The data and analysis will also serve as a baseline for future studies. Repetition of the inventory and analysis at regular intervals will enable the changes to be quantified and projections developed as a basis for planning.

References

- Ageta, Y; Kadota, T (1992) 'Predictions of changes of glacier mass balance in the Nepal Himalaya and Tibetan Plateau: A case study of air temperature increase for three glaciers.' Annals of Glaciology 16: 89–94
- Ageta, Y; Ohata, T; Tanaka, Y; Ikegami, K; Higuchi, K (1980) 'Mass balance of glacier AX010 in Shorong Himal, east Nepal during the summer monsoon season.' Seppyo 41: 34–41
- Andreassen, LM; Paul, F; Kääb, A; Hausberg, JE (2008) 'Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s.' The Cryosphere 2: 131–145
- Bahr, D; Meier, M; Peckham, S (1997) 'The physical basis of volume–area scaling.' Journal of Geophysical Research: Solid Earth 102: 20335–20362
- Baidya, SK; Shrestha, ML; Sheikh, MM (2008) 'Trends in daily climatic extremes of temperature and precipitation in Nepal.' Journal of Hydrology and Meteorology 5(1): 38-53
- Baidya, SK; Regmi, RK; Shrestha, ML (2007) Climate profile and observed climate change and climate variability in Nepal. Kathmandu, Nepal: Department of Hydrology and Meteorology
- Bajracharya, SR; Maharjan, SB; Shrestha, F (2014) 'The status and decadal change of glaciers in Bhutan from the 1980's to 2010 based on satellite data.' Annals of Glaciology 55(66): 159–166
- Bajracharya, SR; Shrestha, B (eds) (2011) The status of glaciers in the Hindu Kush-Himalayan region. Kathmandu, Nepal: ICIMOD
- Bajracharya, SR; Maharjan, SB; Shrestha, BR (2010) 'Second generation glaciers mapping and inventory of Nepal.'

 Journal of Nepal Geological Society 41(Special Issue): 21
- Bajracharya, SR; Mool, PK; Shrestha, BR (2007) Impact of climate change on Himalayan glaciers and glacial lakes: Case studies on GLOF and associated hazards in Nepal and Bhutan. Kathmandu, Nepal: ICIMOD
- Bhambri, R; Bolch, T (2009) 'Glacier mapping: a review with special reference to the Indian Himalayas.' Progress in Physical Geography 33(5): 672–704
- Bolch, T; Menounos, B; Wheate, RD (2010) 'Landsat-based inventory of glaciers in western Canada, 1985-2005.' Remote Sensing Environment 114(1): 127–137
- Bolch, T; Buchroithner, MF; Peters J; Baessler, M; Bajracharya, S (2008) 'Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery.' Natural Hazards and Earth System Sciences 8: 1329–1340
- Bookhagen, B; Burbank, DW (2010) 'Towards a complete Himalayan hydrological budget: The spatiotemporal distribution of snow melt and rainfall and their impact on river discharge.' *Journal of Geophysical Research-Earth Surface* doi:10.1029/2009jf001426
- Chen, J; Ohmura, A (1990) 'Estimation of Alpine glacier water resources and their change since 20 the 1870s.' In Lang, H; Musy, A (eds), Hydrology in Mountain Regions. I-Hydrological Measurements; the Water Cycle, Proceedings of two Lausanne Symposia, August 1990, vol. 193, pp 127–135. Wallingford, UK: IAHS Publications
- Clarke, GKC; Berthier, E; Schoof, CG; Jarosch, AH (2009) 'Neural networks applied to estimating subglacial topography and glacier volume.' *Journal of Climate* 22: 2146–2160
- DHM (2008) Tsho Rolpa GLOF Risk Reduction Project. (Implementation Report), submitted to Department of Hydrology and Meteorology (DHM), His Majesty's Government of Nepal
- Dyurgerov, MB; Meier, MF (2005) Glaciers and the changing Earth System: A 2004 Snapshot, Occasional Paper No. 58. Boulder: Institute of Arctic and Alpine Research, University of Colorado
- Farinotti, D; Huss, M; Bauder, A; Funk, M; Truffer, M (2009) 'A method to estimate the ice volume and ice-thickness distribution of alpine glaciers.' *Journal of Glaciology* 55: 422–430
- Frey, H; Machguth, H; Huss, M; Huggel, C; Bajracharya, S; Bolch, T; Kulkarni, A; Linsbauer, A; Salzmann, N; Stoffel, M (2013) 'Ice volume estimates for the Himalaya–Karakoram region: evaluating different methods.' The Cryosphere Discuss 7: 4813-4854
- Frey, H; Paul, F (2012) 'On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories.' International Journal of Applied Earth Observation and Geoinformation 18: 480–490
- Fugii, Y; Fugita, K; Paudyal, P (1996) 'Glaciological research in hidden valley, Mukut Himal in 1994.' Bulletin of Glacier Research 14: 7–11
- Fujita, K; Sakai, A; Nuimura, T; Yamaguchi, S; Sharma, RR (2009) 'Recent changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya revealed by in situ surveys and multi-temporal ASTER imagery.' IOP. Environmental Research Letters 4: 7

- Fujita, K; Kadota, T; Rana, B; Kayastha, RB; Ageta, Y (2001) 'Shrinkage of glacier AX010 in Shorong region, Nepal Himalayas in the 1990s.' Bulletin of Glaciological Research 18: 51–54
- Fujita, K; Nakawo, M; Fujii, Y; Paudyal, P (1997) 'Changes in glaciers in Hidden Valley, Mukut Himal, Nepal Himalayas, from 1974 to 1994.' *Journal of Glaciology* 43(145): 583–588
- Fushimi, H; Ikegami, K; Higuchi, K; Shankar, K (1985) 'Nepal case study; catastrophic floods.' AHS Publication 149: 125–130
- Hughes, GL; Rao, SS; Rao, TS (2007) 'Statistical analysis and time-series models for minimum/maximum temperatures in the Antarctic Peninsula.' Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 463(2077): 241-259
- Haeberli, W; Hoelzle, M (1995) 'Application of inventory data for estimating characteristics of and regional climatechange effects on mountain glaciers: A pilot study with the European Alps.' Annals of Glaciology 21: 206-212
- Higuchi, K (ed) (1980) 'Glaciers and climates of Nepal Himalayas-Report of the Glaciological Expedition of Nepal-Pt. 4.' Seppyo 41(Special Issue): 111
- Higuchi, K (ed) (1978) 'Glaciers and climates of Nepal Himalayas-Report of the Glaciological Expedition of Nepal-Pt. 3.' Seppyo 40(Special Issue): 84
- Higuchi, K (ed) (1977) 'Glaciers and climates of Nepal Himalayas-Report of the Glaciological Expedition of Nepal-Pt. 2.' Seppyo 39(Special Issue): 67
- Higuchi, K (ed) (1976) 'Glaciers and climates of Nepal Himalayas-Report of the Glaciological Expedition to Nepal.' Seppyo 38(Special Issue): 130
- Huss, M; Farinotti, D (2012) 'Distributed ice thickness and volume of all glaciers around the globe.' Journal of Geophysical Research: Earth Surface 117(F04): doi:10.1029/2012JF002523
- ICIMOD (2011) Glacial lakes and glacial lake outburst floods in Nepal. Kathmandu, Nepal: ICIMOD
- ICIMOD (2005) Inventory of glaciers and glacial lakes and the identification of potential glacial lake outburst floods (GLOFs) affected by global warming in the mountains of India, Pakistan and China/Tibet Autonomous Region.

 Reports of APN Project
- Immerzeel, WW; Van Beek, LPH; Konz, M; Shrestha, AB; Bierkens, MFP (2012). Hydrological response to climate change in a glacierized catchment in the Himalayas. *Climatic change* 110(3-4): 721–736
- IPCC (2007) Climate change 2007: Synthesis report, Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press
- IPCC (2001a) Climate change 2001: Technical summary, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press
- IPCC (2001b) Climate change 2001: Impacts, adaptation and vulnerability, Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press
- Ives, JD; Shrestha, RB; Mool, PK (2010) Formation of glacial lakes in the Hindu Kush-Himalayas and GLOF risk assessment. Kathmandu, Nepal: ICIMOD
- Ives, JD (1986) Glacier lake outburst floods and risk engineering in the Himalaya a review of the Langmoche disaster, Khumbu Himal, 4 August 1985, Occasional Paper No 5. Kathmandu, Nepal: ICIMOD
- Kadota, T; Seko, K; Aoki, T; Iwata S; Yamaguchi, S (2000) 'Shrinkage of the Khumbu Glacier, east Nepal from 1978 to 1995.' In Fountain, A; Nakao, M; Raymond, CF (eds), Debris-covered Glaciers: Proceedings of an International Workshop Held at the University of Washington in Seattle, Washington, USA, 13-15 September 2000, IAHS Publication 264, pp 235–243. Wallingford, UK: IAHS Publication
- Kadota, T; Fujita, K; Seko, K; Kayastha, RB; Ageta, Y (1997) 'Monitoring and Prediction of Shrinkage of a Small Glacier in the Nepal Himalayas.' Annals of Glaciology 24: 90–94
- Kulkarni, AV, Karyakarte, Y (2014a) 'Observed changes in Himalayan glaciers' Current Science 106(2): 237–244
- Kulkarni, AV; Bahuguna, IM; Rathore, BP; Singh, SK; Randhawa, SS; Sood, RK Dhar, S (2014b) 'Glacial retreat in Himalaya using Indian Remote Sensing Satellite Data' Current Science 92(1): 69–74
- Kulkarni, AV; Bahuguna, IM; Rathore, BP; Singh, SK; Randhawa, SS; Sood, RK; Dhar, S (2007) 'Glacial retreat in Himalaya using Indian remote sensing satellite data' Current Science 92(1): 10 January 2007
- Kulkarni, AV (1994) 'A conceptual model to assess effect of climatic variations on distribution of Himalayan glaciers.' In Global change studies: Scientific results from ISRO Geosphere Biosphere Programme (ISRO-GBP-SR-42-94), pp 322-326. Bangalore, India: Indian Space Research Organisation
- Kulkarni, AV (1991) 'Glacier inventory in Himachal Pradesh using satellite data.' Journal of Indian Society of Remote Sensing 19(3):195–203

- Lemke, P; Ren, J; Alley, RB; Allison, I; Carrasco, J; Flato, G; Fujii, Y; Kaser, G; Mote, P; Thomas, RH; Zhang, T (2007) 'Observations: Changes in snow, ice and frozen ground.' In [Solomon, S; Qin, D; Manning, M; Chen, Z; Marquis, M; Averyt, KB; Tignor, M; Miller, HL (eds) Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, pp 339–383. Cambridge, UK: Cambridge University Press
- Li, H; Ng, F; Li, Z; Qin, D; Cheng, G (2012) 'An extended "perfect-plasticity" method for estimating ice thickness along the flow line of mountain glaciers.' Journal of Geophysical Research 117(F1): doi:10.1029/2011JF002104
- Liu, Y; Yao, T; Kang, S; Jiao, N; Zeng, Y (2006) 'Seasonal variation of snow microbial community structure in the East Rongbuk glacier.' Mt. Everest Chinese Science Bulletin 51: 1476–1486
- LIGG/WECS/NEA (1988) Report on first expedition to glaciers and glacier lakes in the Pumqu (Arun) and Poique (Bhote-Sun Kosi) river basins, Xizang (Tibet), China, Sino-Nepalese investigation of glacier lake outburst floods in the Himalaya. Beijing, China: Science Press
- Mool, PK; Bajracharya, SR; Joshi, SP (2001a) Inventory of glaciers, glacial lakes, and glacial lake outburst flood monitoring and early warning systems in the Hindu Kush-Himalayan region: Nepal. Kathmandu, Nepal: ICIMOD
- Mool, PK; Wangda, D; Bajracharya, SR; Joshi, SP; Kunzang, K; Gurung, DR (2001b) Inventory of glaciers, glacial lakes, and glacial lake outburst flood monitoring and early warning system in the Hindu Kush-Himalayan region: Bhutan. Kathmandu, Nepal: ICIMOD
- Müller, F; Caflish, T; Müller, G (1977) Instructions for compilation and assemblage of data for a World Glacier Inventory. Zurich, Switzerland: Swiss Federal Institute of Technology, Temporary Technical Secretariat for World Glacier Inventory
- Nakawo, M; Fugii, Y; Shrestha, ML (1976) 'Flow of Glaciers in Hidden Valley, Mukut Himal.' Seppyo, Journal of Japanese Society of Snow and Ice 38 (Special Issue): 39-43
- Paul, F; Andreassen, LM (2009) 'A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data: challenges and change assessment.' *Journal of Glaciology* 55(192): 607–618 (doi:10.3189/002214309789471 003)
- Paul, F; Kaab, A (2005) 'Perspectives on the production of a glacier inventory from multispectral satellite data in Arctic Canada: Cumberland Peninsula, Baffin Island.' Annals of Glaciology 42: 59–66
- Paul, F (2002) 'Combined technologies allow rapid analysis of glacier changes.' EOS, Transactions American Geophysical Union 83(23): 253–261
- Racoviteanu, AE; Pau, IF; Raup, B; Khalsa, SJS; Armstrong, R (2009) 'Challenges and recommendations in mapping of glacier parameters from space: Results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA.' Annals of Glaciology 50(53): 53–69
- Raper, SCB; Braithwaite, RJ (2009) 'Glacier volume response time and its links to climate and topography based on a conceptual model of glacier hypsometry.' The Cryosphere 3: 183–194
- Shah, T; Giordano, M; Wang, J (2004) 'Irrigation institutions in a dynamic economy: What is China doing differently from India?' Economic and Political Weekly 39: 3452–3461
- Shrestha AB, Wake CP, Dibb JE Mayewski PA (2000) 'Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large scale climatological parameters'. *International Journal of Climatology* 20: 317–327
- Shrestha, AB; Wake, CP; Mayewski, PA; Dibb, JE (1999) 'Maximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 1971-94.' Journal of Climate 12: 2775-2767
- Staford, JM; Wendler, G; Curtis, J (2000) 'Temperature and precipitation of Alaska: 50 year trend analysis.' Theoretical and Applied Climatology 67: 33–44
- Storey, J; Scaramuzza, P; Schmidt, G (2005) Landsat 7 scan line corrector-off gap filled product development. Paper presented at the Pecora 16 Conference, 23-27 October 2005, Sioux Falls, South Dakota, USA
- Vohra, CP (2010) 'Glaciers of India.' In Williams, RS; Ferrigno, JG (eds), Glacier of Asia, Satellite Image Atlas of Glaciers of the World USGS-1386-F-5
- WGMS (1989) 'World glacier inventory Status 1988.' Haeberli, W; Bösch, H; Scherler, K; Østrem, G; Wallén, CC (eds), World Glacier Monitoring Service, pp 458. Zurich, Switzerland: IAHS (ICSI) / UNEP / UNESCO
- WWF (2005) An overview of glaciers, glacier retreat, and subsequent impacts in Nepal, India and China. Kathmandu, Nepal: WWF Nepal
- Yamada, T; Shiraiwa, T; Iida, H; Kadota, T; Watanabe, O; Rana, B; Ageta, Y, Fushimi, H (1992) 'Fluctuations of the glaciers from the 1970s to 1989 in the Khumbu, Shorong and Langtang regions, Nepal Himalayas.' Bulletin of Glacier Research 10: 11–19

Annexes

Annex 1: Landsat images used in the inventory

Table A1.1: Landsat satellite images used in the glacier inventories

Sub-basins	Path-row	Images	Date	Remarks
2010 Inventory				
Arun/Tamor	139–041	172139041_04120111225	12/25/2011	For correction
Artify Idmor	139–041	172139041_04120100120	1/20/2010	Used
Arun/Dudh/Tama/Likhu	140-041	172140041_04120091108	11/8/2009	Used
	141–040	172141040_04020101220	12/20/2010	Used
	141–040	172141040_04020101001	10/1/2010	For correction
Tama/Sun/Indrawati/Trishuli/Budhi Gandaki	141–040	172141040_04020111207	12/7/2011	For correction
	141–040	172141040_04020101204	12/4/2010	For correction
	141–040	172141040_04020111207	12/7/2011	Used
Budhi/Marsyangdi/Seti/Kali/Bheri	142–040	172142040_04020101211	12/11/2010	Used
	143-040	172143040_04020101218	12/18/2010	Used
Bheri/Tila/Mugu	143-040	L5143040_04020090206	2/6/2009	For correction
	143-040	L72143040_04020081212	12/12/2008	For correction
	143-039	172143039_03920111018	10/18/2011	Used
Mugu/Humla	143-039	172143039_03920101202	12/2/2010	For correction
	143-039	172143039_03920111221	12/21/2011	For correction
	144-039	15144039_03920101115	11/15/2010	Used
11 1 04/6 :: // 1 1 1 !:	144-039	172144039_03920111212	12/12/2011	Used
Humla/W.Seti/Kawari/Mahakali	144-039	172144039_03920101209	12/9/2010	For correction
	144-039	172144039_03920101225	12/25/2010	For correction
2000 Inventory				
	139–041	172139041_04120001226	12/26/2000	Mapping
Tamor/Arun	139–040	172139040_04020001108	11/8/2000	Correction
	139–040	171139040_04020001007	10/7/2000	Correction
A /D //:ll /T	140-041	172140041_04120011220	12/20/2001	Mapping
Arun/Dudh/Likhu/Tama	140-041	172140041_04120001030	10/30/2000	Correction
Sun/Indrawati/Trishuli/Budhi	141-040	p141r040_7t20001122	11/22/2000	Mapping
	142-040	172142040_04020001215	12/15/2000	Mapping
Budhi/Marsyangdi/Seti/Kali Gandaki/Bheri	142-040	p142r040_7x19991213	12/13/1999	Correction
Kali Gandaki/Bheri/Mugu/Tila/Humla	143-040	L72143040_04020011209	12/9/2001	Mapping
	143-039	172143039_03920001003	10/3/2000	Mapping
Mugu/Humla	143-039	172143039_03919991204	12/4/1999	Correction
	143-040	p143r040_7t20011225	1/25/2001	Correction
	144-039	LE71440392001286SGS00	10/13/2001	Mapping
	144-039	LT51440391998286XXX02	10/13/1998	Correction
11 1 //	144-039	LE71440391999265SGS01	9/22/1999	Correction
Humla/Kawari/West Seti/Mahakali	144-039	LE71440392000268SGS00	9/24/2000	Correction
	144-039	p144r039_7k20011013	1/13/2001	Correction
	144-039	172144039_03919991109	11/9/1999	Correction

1990 Inventory				
T /A	139–041	14139041_04119900113	1/13/1990	Mapping
Tamor/Arun	139–041	14139041_04119891110	11/10/1989	Correction
	140-041	14140041_04119920922	9/22/1992	Mapping
Arun/Dudh/Likhu/Tama	140-041	14140041_04119900528	5/28/1990	Correction
	140-041	14140041_04119900325	3/25/1990	Correction
Arun/Dudh/Likhu/Tama	140-041	p140r41_5t19921117	11/17/1992	Mapping
Sun/Indrawati/Trishuli/Budhi Gandaki	141-040	14141040_04019911130	11/30/1991	Mapping
Sun/Indrawati/Trishuli/Budhi Gandaki	141-040	p141r40_5t19881012	10/12/1988	Mapping
Budhi/Marsyangdi Seti/Kali/Bheri	142-040	p142r40_5t19901110	11/10/1990	Mapping
Budhi/Marsyangdi/Seti/Kali/Bheri	142-040	14142040_04019890304	3/4/1989	Mapping
Bheri/Mugu/Humla/Tila	143-040	p143r40_5t19901117	11/17/1990	Mapping
Mugu/Humla	143-039	p143r39_5t19921021	10/21/1992	Mapping
Humla/Kawari/West Seti /Mahakali	144-039	p144r39_5t19901023	10/23/1990	Mapping
1980 Inventory				
Tamor/Arun/Dudh	150-041	p150r41_2m19761219	12/19/1976	Mapping
D II (1) I (T) (C (1) I) (T) I !	151-041	m2151041_04119770107	1/7/1977	Mapping
Dudh/Likhu/Tama/Sun/Indrawati/Trishuli	151-041	m2151041_04119761027	10/27/1976	Mapping
T.	151-040	p151r040_2dm19770107	1/7/1977	Mapping
Trishuli/Budhi Gandaki/Marsyangdi/Seti	152–040	p152r40_2m19761203	12/3/1976	Mapping
T. - /D - C - /A - /C -	152-040	LM21520401977044XXX03	2/13/1977	Mapping
Trishuli /Budhi Gandaki/Marsyangdi/Seti	152-040	LM21520401976302XXX01	10/28/1976	Mapping
	153-040	m2153040_04019770322	3/22/1977	Mapping
	153-040	m2153040_04019761029	10/29/1976	Mapping
K 1: 0	153-040	m2153040_04019761204	12/4/1976	Mapping
Kali Gandaki/Bheri/Mugu/Tila/Humla	153-040	m2153040_04019770109	1/9/1977	Mapping
	153-040	m2153040_04019770214	2/14/1977	Mapping
	153-040	p153r40_3m19790707	7/7/1979	Mapping
Bheri/Mugu/Tila	154-040	m2154040_04019761030	10/30/1976	Mapping
Mugu/Tila	154-040	p154r40_3m19790109	1/9/1979	Mapping
Mugu/Tila	154-040	m2154040_04019761205	12/5/1976	Mapping
	154-039	m2154039_03919761117	11/17/1976	Mapping
Mugu/Humla	154-039	m2154039_03919761012	10/12/1976	Mapping
	154-039	p154r39_2m19770323	3/23/1977	Mapping
II	155-039	p155r39_2m19761206	12/6/1976	Mapping
Humla/Kawari/West Seti/Mahakali	155-039	LM21550391976305XXX00	10/31/1976	Mapping

Annex 2: **Detailed Tables**

Detailed characteristics of the sub-basins in the individual basins in 2010

Table A2.1: Glacier area classes in the Karnali sub-basins (2010)

Basin	Class	Area	Glacier	number	Glacie	r area	Estimated id	ce reserves	Mean area per glacier
Ω		km²	Number	%	km²	%	km³	%	km ²
	la	≤ 0.10	87	21.70	5.7	1.56	0.1	0.29	0.07
	1b	0.11–0.50	164	40.90	40.4	11.09	1	4.07	0.25
	2	0.51-1.00	<i>7</i> 3	18.20	51.9	14.27	1.9	7.80	0.71
Bheri	3	1.01–5.00	67	16.71	141.5	38.90	8.3	33.52	2.11
	4	5.01–10.00	5	1.25	34.2	9.39	2.9	11.57	6.83
	5	≥ 10.01	5	1.25	90.2	24.79	10.5	42.75	18.04
		Total	401	100	363.85	100	24.66	100	0.91
	1a	≤ 0.10	22	36.07	1.4	5.21	0	1.33	0.06
	1b	0.11–0.50	26	42.62	6	22.46	0.1	11.20	0.23
	2	0.51-1.00	8	13.11	6.4	23.88	0.2	18.83	0.80
틸	3	1.01–5.00	4	6.56	5.6	20.93	0.3	20.58	1.40
	4	5.01–10.00	1	1.64	7.4	27.53	0.6	48.05	7.37
	5	≥ 10.01	0	0	0	0	0	0	0
		Total	61	100	26.77	100.00	1.31	100	0.44
	1a	≤ 0.10	53	25.85	3.4	2.85	0	0.72	0.06
	1b	0.11–0.50	88	42.93	21.8	18.32	0.5	9.33	0.25
_	2	0.51–1.00	35	1 <i>7</i> .0 <i>7</i>	24.2	20.27	0.9	15.16	0.69
Mugu	3	1.01–5.00	27	13.1 <i>7</i>	56.3	47.26	3.2	55.60	2.09
~	4	5.01–10.00	2	0.98	13.5	11.30	1.1	19.18	6.73
	5	≥ 10.01	0	0	0	0	0	0	0
		Total	205	100	119.18	100	5.84	100	0.58
	la	≤ 0.10	115	24.26	7.6	2.25	0.1	0.49	0.07
	1b	0.11–0.50	209	44.09	49.3	14.58	1.2	6.18	0.24
٥	2	0.51–1.00	65	13. <i>7</i> 1	44.9	13.29	1.6	8.46	0.69
Humla	3	1.01–5.00	<i>7</i> 3	15.40	138.1	40.88	7.7	39.29	1.89
_	4	5.01–10.00	8	1.69	51.2	15.16	4.2	21.49	6.40
	5	≥ 10.01	4	0.84	46.8	13.84	4.7	24.09	11.69
		Total	474	100	337.87	100	19.48	100	0.71
	la	≤ 0.10	11	22.92	0.7	2.48	0.0	0.62	0.07
	1b	0.11–0.50	19	39.58	5.2	1 <i>7</i> .91	0.1	9.49	0.27
· c	2	0.51–1.00	13	27.08	9.5	32.54	0.4	24.58	0.73
Kawari	3	1.01–5.00	4	8.33	6.7	23.07	0.4	24.75	1.68
¥	4	5.01–10.00	1	2.08	7	24.00	0.6	40.57	7.00
	5	≥ 10.01	0	0	0	0	0	0	0
		Total	48	100	29.16	100	1.45	100	0.61
	1a	≤ 0.10	53	19.63	3.2	2.19	0	0.54	0.06
	1b	0.11–0.50	146	54.07	36	24.66	0.9	12.46	0.25
. =	2	0.51-1.00	40	14.81	29.2	20.02	1.1	15.04	0.73
West Seti	3	1.01–5.00	28	10.37	52.1	35.65	2.9	39.58	1.86
š	4	5.01–10.00	2	0.74	12.6	8.63	1	14.07	6.30
	5	≥ 10.01	1	0.37	12.9	8.84	1.3	18.31	12.91

Table A2.2: Morphological classification of glaciers in the Karnali sub-basins (2010)

Basin		Glacier type	Glacier	number	Glacie	r area	Estimated id	ce reserves	Mean area per glacier
Ã			Number	%	km²	%	km³	%	km²
		Miscellaneous	0	0	0	0	0	0	0
	.⊆	Ice Apron	71	1 <i>7.7</i>	12.9	3.5	0.34	1.4	0.18
	Mountain	Cirque	1	0.2	0.1	0	0	0	0.12
Bheri	W	Niche	36	9	3.9	1.1	0.07	0.3	0.11
Φ.		Basin	287	71.6	269.6	74.1	15.67	63.5	0.94
	Valley	Trough	6	1.5	77.4	21.3	8.58	34.8	12.89
	,	Total	401	100	363.8	100	24.66	100	0.91
		Miscellaneous	0	0	0	0	0	0	0
	.⊆	Ice Apron	14	23	1.3	4.7	0.02	1.6	0.09
	Mountain	Cirque	0	0	0	0	0	0	0
멸	V	Niche	4	6.6	0.2	0.9	0	0.2	0.06
-		Basin	42	68.9	17.9	66.9	0.66	50.1	0.43
	Valley	Trough	1	1.6	7.4	27.5	0.63	48.0	7.37
		Total	61	100	26.8	100	1.31	100	0.44
		Miscellaneous	0	0	0	0	0	0	0
	.⊑	Ice Apron	39	19	6.9	5.8	0.18	3.1	0.18
	Mountain	Cirque	0	0	0	0	0	0	0
Mugu	×	Niche	15	7.3	1.6	1.3	0.03	0.5	0.11
2		Basin	150	73.2	106.7	89.5	5.36	91.7	0.71
	Valley	Trough	1	0.5	4	3.3	0.27	4.7	3.98
		Total	205	100	119.2	100	5.84	100	0.58
		Miscellaneous	2	0.4	0.6	0.2	0.02	0.1	0.28
	.⊑	Ice Apron	55	11.6	9.2	2.7	0.23	1.2	0.17
	Mountain	Cirque	1	0.2	0	0.0	0	0	0.04
Humla	×	Niche	55	11.6	5.2	1.5	0.09	0.4	0.09
I		Basin	357	75.3	283.6	83.9	15.31	78.6	0.79
	Valley	Trough	4	0.8	39.3	11.6	3.85	19.8	9.82
		Total	474	100	337.9	100	19.48	100	0.71
		Miscellaneous	0	0	0	0	0	0	0.
	. <u>⊆</u>	Ice Apron	3	6.3	0.3	1.1	0.01	0.3	0.10
·=	Mountain	Cirque	0	0	0	0	0	0	0
Kawari	×	Niche	6	12.5	0.5	1.6	0.01	0.5	0.08
ž		Basin	38	79.2	21.4	73.3	0.85	58.6	0.56
	Valley	Trough	1	2.1	7	24	0.59	40.6	7
		Total	48	100	29.2	100	1.45	100	0.61
		Miscellaneous	0	0	0	0	0	0	0
	٠Ξ	Ice Apron	43	15.9	6.9	4.7	0.17	2.3	0.16
. =	Mountain	Cirque	2	0.7	0.1	0.1	0	0	0.06
West Seti	Mc	Niche	33	12.2	3.2	2.2	0.05	0.7	0.10
š		Basin	186	68.9	99.8	68.3	3.97	54.5	0.54
	Valley	Trough	6	2.2	36.1	24.7	3.10	42.5	6.02
		Total	270	100	146	100	7.28	100	0.54

Table A2.3: Area-elevation distribution of glaciers in the Karnali sub-basins (2010)

Elevation range			1	Area (km²)		1	1
(masl)	West Seti	Kawari	Humla	Mugu	Tila	Bheri	Total
3,600–3,700		0.568					0.566
3,700–3,800		1.703					1.697
3,800–3,900		0.967					0.964
3,900–4,000		0.248					0.247
4,000–4,100		0.123					0.122
4,100–4,200	0.26	0.14			0.089	0.364	0.852
4,200–4,300	1.061	0.165	0.02		0.395	1.425	3.064
4,300–4,400	1.229	0.289	0.524		0.843	1.24	4.12
4,400–4,500	2.263	0.286	1.382		0.912	1.306	6.136
4,500–4,600	3.83	0.33	2.549	0.474	0.306	1.311	8.775
4,600–4,700	4.808	0.426	4.481	0.914	0.347	1.787	12.731
4,700–4,800	5.81	0.517	7.163	1.559	0.590	2.994	18.60
4,800–4,900	7.892	0.692	13.215	3.875	0.675	3.993	30.29
4,900–5,000	11.132	1.855	21.087	4.232	1.422	4.872	44.528
5,000–5,100	17.399	3.156	28.724	6.794	2.333	11.654	69.959
5,100–5,200	18.468	4.381	34.569	8.606	3.335	16.78	86.043
5,200–5,300	15.254	4.882	38.99	12.628	3.379	23.562	98.636
5,300–5,400	13.402	4.46	42.243	12.256	2.941	29.67	104.954
5,400–5,500	11.552	1.771	39.894	13.938	2.083	34.505	103.761
5,500–5,600	6.36	0.962	36.685	12.627	1.652	37.309	95.667
5,600–5,700	4.522	0.417	25.88	9.035	1.555	38.296	79.801
5,700–5,800	3.665	0.264	17.032	8.052	1.211	30.169	60.464
5,800–5,900	3.013	0.113	10.227	8.278	0.987	23.853	46.521
5,900–6,000	2.687	0.03	4.708	6.141	0.658	18.397	32.656
6,000–6,100	2.514	0.03	2.85	4.948	0.529	14.621	25.516
6,100–6,200	2.269	0.033	1.531	2.566	0.393	11.739	18.552
6,200–6,300	1.71	0.046	1.16	1.18	0.119	10.545	14.784
6,300–6,400	1.475	0.044	1.148	0.476	0.007	9.007	12.179
6,400–6,500	1.322	0.057	0.67	0.17		7.186	9.423
6,500–6,600	0.836	0.065	0.433	0.105		5.838	7.293
6,600–6,700	0.536	0.06	0.304	0.134		5.113	6.162
6,700–6,800	0.267	0.06	0.181	0.106		4.563	5.192
6,800–6,900	0.278	0.005	0.097	0.022		3.643	4.057
6,900–7,000	0.1		0.019			2.61	2.739
7,000–7,100						1.905	1.912
7,100–7,200						1.616	1.622
7,200–7,300						0.982	0.985
7,300–7,400						0.586	0.588
7,400–7,500						0.335	0.336
	145.914	29.146	337.766	119.116	26.761	363.777	1022.495

Table A2.4: Glacier area classes in the Gandaki sub-basins (2010)

Basin	Class	Area	Glacier	number	Glacie	r area	Estimated	ice reserves	Mean area per glacier
Δ		km²	Number	%	km ²	%	km ³	%	km ²
	1a	≤ 0.10	28	16.97	1.9	0.92	0	0.13	0.07
	1b	0.11–0.50	83	50.3	21.7	10.46	0.6	2.9	0.26
<u></u>	2	0.51–1.00	20	12.12	13.7	6.62	0.5	2.61	0.69
Trishuli	3	1.01–5.00	28	16.97	56.6	27.27	3.2	16.71	2.02
=	4	5.01–10.00	2	1.21	13.4	6.48	1.1	5.81	6.72
	5	≥ 10.01	4	2.42	100.2	48.26	13.8	71.83	25.04
		Total	165	100	207.56	100	19.26	100	1.26
	1a	≤ 0.10	29	11.98	2	0.59	0	0.09	0.07
	1b	0.11–0.50	108	44.63	27.2	7.80	0.7	2.4	0.25
Budhi Gandaki	2	0.51–1.00	44	18.18	32	9.1 <i>7</i>	1.2	4.2	0.73
\$	3	1.01–5.00	46	19.01	94	26.94	5.3	18.72	2.04
id ji	4	5.01–10.00	7	2.89	51.2	14.66	4.4	15.42	7.31
ω	5	≥ 10.01	8	3.31	142.4	40.84	16.9	59.17	1 <i>7</i> .81
		Total	242	100.00	348.81	100.00	28.53	100.00	1.44
	1a	≤ 0.10	58	15.1	4.1	0.81	0.1	0.13	0.07
	1b	0.11–0.50	172	44.79	43.9	8.63	1.1	2.78	0.26
igd:	2	0.51–1.00	51	13.28	36.7	7.20	1.4	3.42	0.72
Marsyangdi	3	1.01–5.00	83	21.61	166.5	32.71	9.5	23.70	2.01
Mar	4	5.01–10.00	8	2.08	58.6	11.51	5	12.58	7.33
	5	≥ 10.01	12	3.13	199.2	39.13	22.9	57.38	16.6
		Total	384	100	508.97	100	39.97	100	1.33
	1a	≤ 0.10	10	22.22	0.7	0.98	0	0.11	0.07
	1b	0.11–0.50	20	44.44	4.7	6.52	0.1	1.38	0.23
	2	0.51–1.00	6	13.33	4.3	5.99	0.2	1.97	0.72
Seti	3	1.01–5.00	8	17.78	18.3	25.60	1.1	13.54	2.29
	4	5.01–10.00	0	0	0	0	0	0	0
	5	≥ 10.01	1	2.22	43.6	60.91	6.7	83	43.63
		Total	45	100	71.63	100	8.09	100	1.59
	1a	≤ 0.10	74	14.68	4.8	0.91	0.1	0.16	0.06
	1b	0.11–0.50	246	48.81	62.1	11. <i>7</i> 6	1.6	4.02	0.25
Kali Gandaki	2	0.51–1.00	74	14.68	52.3	9.92	1.9	4.97	0.71
Ğan	3	1.01–5.00	93	18.45	18 <i>7</i>	35.46	10.6	27.28	2.01
Kali	4	5.01–10.00	10	1.98	67.7	12.84	5.7	14.61	6.77
_	5	≥ 10.01	7	1.39	153.5	29.11	19	48.96	21.93
		Total	504	100	527.45	100	38.90	100	1.05

Table A2.5: Morphological classification of glaciers in the Gandaki sub-basins (2010)

Basin		Glacier type	Glacier	number	Glacie	r area	Estimated i	ce reserves	Mean area per glacier
Bo			Number	%	km²	%	km³	%	km ²
	aji	Miscellaneous	1	0.6	0.5	0.2	0.02	0.1	0.48
	Mountain	Ice Apron	61	37	20.5	9.9	0.73	3.8	0.34
<u></u>	₹	Cirque	3	1.8	0.8	0.4	0.02	0.1	0.26
Trishuli		Niche	7	4.2	1.9	0.9	0.08	0.4	0.28
<u>,-</u>		Basin	86	52.1	71.6	34.5	3.63	18.8	0.83
	Valley	Trough	7	4.2	112.2	54.1	14.78	76.7	16.03
		Total	165	100	207.6	100	19.26	100	1.26
	ain	Miscellaneous	1	0.4	0.5	0.1	0.02	0.1	0.5
	Mountain	Ice Apron	74	30.6	35.4	10.2	1.60	5.6	0.48
dak	₹	Cirque	2	0.8	0.4	0.1	0.01	0	0.18
Gar		Niche	26	10. <i>7</i>	5	1.4	0.13	0.5	0.19
Budhi Gandaki		Basin	127	52.5	161.3	46.2	10.20	35.7	1.27
₩.	Valley	Trough	12	5	146.3	41.9	16.58	58.1	12.19
		Total	242	100	348.8	100	28.53	100	1.44
	ü	Miscellaneous	0	0	0	0	0	0	0
	Mountain	Ice Apron	108	28.1	38.5	7.6	1.65	4.1	0.36
i b	Ž	Cirque	2	0.5	0.5	0.1	0.01	0	0.23
Marsyangdi		Niche	26	6.8	5	1	0.14	0.3	0.19
Mar		Basin	238	62.0	307.5	60.4	19.89	49.8	1.29
	Valley	Trough	10	2.6	157.5	30.9	18.28	45.7	15.75
		Total	384	100	509	100	39.97	100	1.33
	ain	Miscellaneous	0	0	0	0	0	0	0
	Mountain	Ice Apron	16	35.6	5.5	7.7	0.19	2.4	0.34
	2	Cirque	0	0	0	0	0	0	0
Seti		Niche	7	15.6	0.8	1.1	0.01	0.2	0.12
		Basin	22	48.9	65.3	91.2	7.88	97.4	2.97
	Valley	Trough	0	0	0	0	0	0	0
		Total	45	100	71.6	100	8.09	100	1.59
	ai.	Miscellaneous	1	0.2	1.2	0.2	0.05	0.1	1.2
	Mountain	Ice Apron	158	31.3	40.9	7.8	1.30	3.3	0.26
. <u>k</u>	₹	Cirque	1	0.2	0.2	0.0	0.00	0.0	0.18
Sanc		Niche	15	3	1.5	0.3	0.03	0.1	0.1
Kali Gandaki		Basin	324	64.3	367.9	69.8	22.99	59.1	1.14
-	Valley	Trough	5	1	115.7	21.9	14.54	37.4	23.13
	,	Total	504	100	527.4	100	38.90	100	1.05
	1			I	I .	L	ı		I

Table A2.6: Area-elevation distribution of glaciers in the Gandaki sub-basins (2010)

(masl)	Kali Gandaki	Marsyangdi	Seti	Budhi Gandaki	Trishuli	Total
3,200–3,300	0	0	0	0.11	0	0.1
3,300–3,400	0	0	0	0.59	0	0.59
3,400–3,500	0	0	0	1.24	0	1.24
3,500–3,600	0	0	0	2.13	0	2.13
3,600–3,700	0	0.08	0	1.57	0.06	1.7
3,700–3,800	0	0.19	0	1.72	0.25	2.17
3,800–3,900	0.04	0.51	0	2.49	0.07	3.12
3,900–4,000	0.36	0.97	0.01	4.58	0.14	6.07
4,000–4,100	1.29	1.55	0.05	4.09	0.13	7.1
4,100–4,200	2.13	4.21	0.24	5.13	0.36	12.08
4,200–4,300	2.02	5.04	0.18	5.56	0.35	13.1
4,300–4,400	1.43	4.66	0.24	5.43	1.16	12.93
4,400–4,500	2.24	4.66	0.24	5.15	2.07	14.4
4,500–4,600	2.5	5.85	0.5	5.62	3.40	17.88
4,600–4,700	2.91	5.34	1.26	6.14	5.13	20.8
4,700–4,800	3.44	4.96	1.39	8.96	5.59	24.3
	4.31	5.85	1.35		7.19	30.6
4,800–4,900				11.86		
4,900–5,000	5.22	8.15	1.89	13.74	7.42	36.4
5,000–5,100	8.6	14.52	2.28	15.8	9.44	50.6
5,100–5,200	13.92	18.82	2.18	17.86	13.78	66.6
5,200–5,300	15.80	19.44	2.11	20.01	16.32	73.7
5,300–5,400	17.32	23.39	2.17	21.55	17.59	82.0
5,400–5,500	21.47	29.15	2.04	24.69	18.97	96.3
5,500–5,600	26.19	35.86	2.29	23.33	16.06	103.7
5,600–5,700	36.29	41.49	2.15	20.07	15.06	115.0
5,700–5,800	52.57	40.91	2.33	16.6	14.25	126.6
5,800–5,900	63.48	39.77	3.29	15.6	11.43	133.4
5,900–6,000	64.37	35.91	2.99	13.64	8.69	125.4
6,000–6,100	45.2	32.09	3.36	12.66	6.71	99.97
6,100–6,200	31.36	26.87	3.45	11.96	6.41	80.03
6,200–6,300	22.3	20.2	4	11.18	5.15	62.8
6,300–6,400	15.8	16.36	4.34	9.67	3.79	49.9
6,400–6,500	12.29	13.53	6	6.23	3.32	41.4
6,500–6,600	9.29	10.8	4.59	3.95	2.56	31.1
6,600–6,700	7.93	8.29	3.17	3.35	1.82	24.5
6,700–6,800	6.7	7.05	2.95	3.29	1.26	21.2
6,800–6,900	6.02	6.05	2.53	2.8	0.82	18.2
6,900–7,000	5.16	4.7	1.51	1.9	0.38	13.6
7,000–7,100	4.52	3.36	1.31	1.53	0.32	11.0
7,100–7,200	2.88	2.88	1.04	1.28	0.12	8.1
7,200–7,300	2.22	2.69	1.06	0.88	0	6.8
7,300–7,400	2.09	1.38	0.79	0.74	0	4.9
7,400–7,500	1.68	0.81	0.24	0.79	0	3.5
7,500–7,600	1.24	0.43	0.02	0.56	0	2.2
7,600–7,700	1.07	0.20	0	0.38	0	1.6
7,700–7,800	0.84	0.06	0	0.14	0	1.0
7,800–7,900	0.45	0	0	0.08	0	0.5
7,900–8,000	0.29	0	0	0.04	0	0.3
8,000–8,100	0.09	0	0	0	0	0.0
8,100–8,200	0.01	0	0	0	0	0.0
Total	527.32	509.01	71.63	348.67	207.58	1664.2

Table A2.7: Glacier area classification in the Koshi sub-basins (2010)

Basin	Class	Area	Glacier	number	Glacier	area	Estimated ic	e reserves	Mean area per glacier
Ω		(km²)	Number	%	km ²	%	km³	%	km^2
	la	≤ 0.10	60	22.9	3.8	0.98	0	0.11	0.06
	1b	0.11–0.50	116	44.27	28.2	<i>7</i> .31	0.7	1.67	0.24
<u> </u>	2	0.51-1.00	34	12.98	22.8	5.91	0.8	1.95	0.67
Tamor	3	1.01–5.00	40	15.27	82.3	21.32	4.7	11.20	2.06
12	4	5.01–10.00	5	1.91	36.8	9.54	3.2	<i>7</i> .51	7.36
	5	≥ 10.01	7	2.67	212	54.94	32.8	<i>7</i> 7.56	30.29
		Total	262	100	385.93	100	42.26	100	1.47
	1a	≤ 0.10	21	19.44	1.3	0.84	0.0	0.10	0.06
	1b	0.11–0.50	53	49.07	13.3	8.89	0.3	2.21	0.25
_	2	0.51-1.00	14	12.96	10.4	6.98	0.4	2.61	0.74
Arun	3	1.01–5.00	17	15.74	36.9	24.75	2.2	14.38	2.17
•	4	5.01-10.00	0	0	0	0	0	0	х
	5	≥ 10.01	3	2.78	87.3	58.55	12.1	80.69	29.11
		Total	108	100	149.19	100	15.00	100	1.38
	1a	≤ 0.10	53	18.47	3.5	0.89	0	0.11	0.07
	1b	0.11–0.50	139	48.43	36.6	9.37	0.9	2.41	0.27
shi	2	0.51-1.00	37	12.89	26.9	6.88	1	2.57	0.73
Dudh Koshi	3	1.01–5.00	46	16.03	102.3	26.14	6	15.43	2.22
Dud	4	5.01–10.00	7	2.44	48.3	12.35	4.1	10.36	6.9
	5	≥ 10.01	5	1.74	173.5	44.34	27.1	69.11	34.69
		Total	287	100	391.15	100	39.20	100	1.36
	1a	≤ 0.10	6	22.22	0.3	1.49	0	0.29	0.06
	1b	0.11–0.50	13	48.15	3.5	15.41	0.1	6.32	0.27
_	2	0.51-1.00	2	7.41	1.4	6.27	0.1	3.75	0.72
Likhu	3	1.01–5.00	5	18.52	8.8	38.18	0.5	32.64	1.75
_	4	5.01–10.00	1	3.70	8.9	38.65	0.8	<i>57</i> .01	8.87
	5	≥ 10.01	0	0	0.0	0	0	0	х
		Total	27	100	22.95	100	1.42	100	0.85
	la	≤ 0.10	21	24.71	1.2	1.45	0	0.19	0.06
	1b	0.11–0.50	40	47.06	9.7	11.44	0.2	3.03	0.24
shi	2	0.51-1.00	14	16.47	10	11.82	0.4	4.69	0.71
λ	3	1.01–5.00	8	9.41	13.3	15.79	0.7	8.8	1.67
Tama Koshi	4	5.01–10.00	0	0	0	0	0	0	х
	5	≥ 10.01	2	2.35	50.2	59.49	6.6	83.3	25.11
		Total	85	100	84.42	100	7.89	100	0.99
	1a	≤ 0.10	8	20.51	0.5	0.92	0	0.14	0.06
	1b	0.11–0.50	17	43.59	3.2	6.08	0.1	1.67	0.19
šh :	2	0.51-1.00	4	10.26	2.5	4.84	0.1	2.16	0.64
Sun Koshi	3	1.01–5.00	7	17.95	13.4	25.46	0.7	17.64	1.91
Sun	4	5.01–10.00	1	2.56	7.9	15.02	0.7	16.62	7.89
	5	≥ 10.01	2	5.13	25.1	47.68	2.6	61 <i>.77</i>	12.53
		Total	39	100	52.57	100	4.16	100	1.35
	la	≤ 0.10	12	32.43	0.6	3.6	0	0.86	0.05
	1b	0.11-0.50	16	43.24	4.1	25	0.1	14.19	0.26
. .	2	0.51-1.00	5	13.51	3.4	20.87	0.1	1 <i>7</i> .1 <i>7</i>	0.68
Indrawati	3	1.01–5.00	4	10.81	8.3	50.54	0.5	67.78	2.07
<u> </u>	4	5.01–10.00	0	0	0	0	0	0	х
_									
_	5	≥ 10.01	0	0	0	0	0	0	х

Table A2.8: Morphological classification of glaciers in the Koshi sub-basins (2010)

Basin		Glacier type	Glacier no	umber	Glacie	r area	Estimate reser		Mean area per glacier
B		-	Number	%	km ²	%	km³	%	km ²
		Miscellaneous	12	4.6	5.1	1.3	0.19	0.5	0.43
	.⊆	Ice Apron	83	31 <i>.7</i>	15.5	4.0	0.41	1.0	0.19
	Mountain	Cirque	5	1.9	0.8	0.2	0.02	0.0	0.16
Tamor	W	Niche	17	6.5	2.6	0.7	0.07	0.2	0.15
Þ		Basin	128	48.9	100.0	25.9	4.87	11.5	0.78
	Valley	Trough	17	6.5	261.9	67.9	36.70	86.8	15.40
	Total	262	100	386	100	42.26	100		1.47
		Ice Apron	31	28.7	8.9	6.0	0.29	1.9	0.29
	Mountain	Niche	5	4.6	0.4	0.2	0.01	0.0	0.07
Arun	Mou	Basin	69	63.9	52.6	35.3	2.58	17.2	0.76
⋖	Valley	Trough	3	2.8	87.3	58.5	12.11	80.8	29.11
	Total	108	100	149.2	100	14.98	100		1.38
		Miscellaneous	1	0.3	0.3	0.1	0.01	0.0	0.31
	_	Ice Apron	84	29.3	23.1	5.9	0.74	1.9	0.28
<u>:Ē</u>	Mountain	Cirque	1	0.3	0.2	0.0	0.00	0.0	0.17
Š	Mou	Niche	38	13.2	5.6	1.4	0.13	0.3	0.15
Dudh Koshi		Basin	143	49.8	121.6	31.1	6.11	15.6	0.85
_	Valley	Trough	20	7.0	240.4	61.4	32.21	82.2	12.02
	Total	287	100	391.2	100	39.20	100		1.36
		Ice Apron	6	22.2	0.8	3.4	0.02	1.1	0.13
	i gi	Cirque	1	3.7	0.3	1.2	0.01	0.5	0.28
2	Mountain	Niche	1	3.7	0.0	0.2	0.00	0.0	0.04
Likho	2	Basin	16	59.3	12.3	53.7	0.57	40.1	0.77
	Valley	Trough	3	11.1	9.5	41.5	0.83	58.3	3.18
	Total	27	100	23.0	100	1.42	100		0.85
		Ice Apron	20	23.5	4.5	5.3	0.13	1. <i>7</i>	0.22
	ā: Ē	Cirque	1	1.2	0.1	0.1	0.00	0.0	0.11
Sosh	Mountain	Niche	14	16.5	1.3	1.5	0.02	0.3	0.09
Tama Koshi	>	Basin	48	56.5	28.3	33.6	1.16	14.7	0.59
둳	Valley	Trough	2	2.4	50.2	59.5	6.57	83.3	25.11
	Total	85	100	84.4	100	7.89	100		0.99
		Ice Apron	11	28.2	1.7	3.2	0.03	0.8	0.15
	Mountain	Cirque	1	2.6	0.1	0.1	0.00	0.0	0.06
oshi	loun	Niche	2	5.1	0.2	0.4	0.00	0.1	0.12
Sun Koshi	>	Basin	22	56.4	17.6	33.5	0.86	20.7	0.80
ง	Valley	Trough	3	7.7	33.0	62.7	3.26	78.4	10.99
	Total	39	100	52.6	100	4.16	100		1.35
		Ice Apron	7	18.9	0.7	4.0	0.01	1.6	0.09
Έ	tain	Cirque	1	2.7	0.1	0.4	0.00	0.1	0.06
Indrawati	Mountain	Niche	3	8.1	0.2	1.5	0.00	0.5	0.08
hdr	>	Basin	26	70.3	15.5	94.2	0.71	97.8	0.59
		37	100	, 0.0	10.0	, -,	٠., ١	77.0	

Table A2.9: Area-elevation distribution of glaciers in the Koshi sub-basins (2010)

ranges (masl)	Indrawati	Sun	Tama	Likhu	Dudh	Arun	Tamor	Total
4,000–4,100		0.118						0.117
4,100–4,200		0.267				0.008	0.072	0.346
4,200–4,300		0.511				0.164	0.302	0.976
4,300–4,400		0.487	0.062	0.042	0.047	0.507	1.031	2.178
4,400–4,500		0.332	0.14	0.356	0.418	0.608	2.951	4.815
4,500–4,600		0.881	0.097	0.514	1.288	0.854	2.689	6.328
4,600–4,700		1.232	1.014	0.316	1.451	2.063	4.829	10.911
4,700–4,800		1.418	2.090	0.402	4.738	2.523	5.121	16.288
4,800–4,900	0.054	2.628	2.548	0.694	8.28	1.779	7.54	23.514
4,900–5,000	0.268	3.581	2.36	0.605	14.568	3.410	10.219	35.002
5,000–5,100	1.475	4.43	3.971	1.01	22.089	5.388	8.587	46.879
5,100–5,200	2.473	5.167	4.907	1.719	26.646	7.304	15.163	63.299
5,200–5,300	3.386	6.074	6.413	2.915	33.793	8.847	19.454	80.772
5,300–5,400	3.47	6.403	7.891	3.874	35.471	9.456	24.958	91.419
5,400–5,500	2.684	5.683	10.245	3.12	35.618	8.821	30.541	96.64
5,500–5,600	1.509	3.86	10.245	2.059	36.726	7.149	32.386	93.909
5,600–5,700	0.71	2.361	8.186	1.057	31.9	6.28	35.201	85.733
5,700–5,800	0.309	1.394	6.719	0.882	23.018	7.295	38.972	78.68
5,800–5,900	0.053	1.002	6.242	0.765	18.059	9.168	34.755	70.132
5,900–6,000	0.008	0.776	4.431	0.465	13.581	12.45	24.391	56.159
6,000–6,100	0.000	0.699	3.356	0.404	11.464	15.339	19.095	50.4
6,100–6,200		0.64	1.466	0.57	9.868	11.999	12.359	36.928
6,200–6,300		0.529	0.684	0.368	7.938	8.011	8.921	26.472
6,300–6,400		0.547	0.537	0.358	7.791	6.281	6.081	21.604
6,400–6,500		0.654	0.415	0.282	7.718	3.53	6.012	18.623
6,500–6,600		0.477	0.264	0.119	6.907	2.419	5.015	15.212
6,600–6,700		0.185	0.124	0.049	5.176	2.023	4.468	12.039
6,700–6,800		0.149			4.738	1.314	4.223	10.438
6,800–6,900		0.074			3.922	1.113	3.267	8.385
6,900–7,000		0.008			3.538	1.068	3.017	7.64
7,000–7,100					3.229	0.789	3.143	7.17
7,100–7,200					2.942	0.653	2.912	6.518
7,200–7,300					1.784	0.349	2.059	4.2
7,300–7,400					1.444	0.125	1.177	2.75
7,400–7,500					1.220	0.054	0.795	2.07
7,500–7,600					1.131	0.023	0.958	2.115
7,600–7,700					0.855	0.008	0.989	1.850
7,700–7,800					0.584	0.008	1.375	1.973
7,800–7,900					0.442	0.005	0.491	0.94
7,900–8,000					0.421		0.233	0.654
8,000–8,100					0.247		0.066	0.313
8,100–8,200					0.123		0.042	0.164
8,200–8,300					0.008		0.043	0.05
8,300–8,400					3.330		0.015	0.013
8,400–8,500							0.012	0.012
Total	16.400	52.565	84.409	22.949	391.181	149.184	385.931	1,102.64

Table A2.10: Change in glacier area classes in Nepal

Class	Area (km²)		Glacier	3lacier number		Q	lacier num	Glacier number change	۵		Glacier area (km²)	·еа (km²)		ਲੁ	Glacier area change (km²)	change (kn	ر²۲)
		1980	1990	2000	2010	80-90	00-06	00-10	80-10	1980	1990	2000	2010	80-90	00-06	00-10	80-10
	≤ 0.10	179	439	618	781	260	179	163	602	13.1	30.5	41.2	50.3	17.4	10.7	9.1	37.2
	0.11-0.50	1,523	1,687	1,743	1,739	164	56	4	216	421.4	431.8	434.9	431.4	10.4	3.1	-3.5	10.1
	0.51-1.00	723	674	809	556	-49	99-	-52	-167	511.5	475.2	425	394.2	-36.3	-50.3	-30.8	-117.3
	1.01–5.00	831	705	652	909	-126	-53	-46	-225	1687	1,436.4	1,305.8	1234.1	-250.7	-130.5	-71.8	-453
	5.01-10.00	96	81	80	64	-15	-	-16	-32	663.1	564.3	557.3	444.3	8.86-	7-	-112.9	-218.7
	≥ 10.01	78	70	64	62	φ	φ	-2	-16	1,872.3	1,568.2	1446.7	1348.1	-304.1	-121.5	9.86-	-524.1
	Total	3,430	3,656	3,765	3,808	226	109	43	378	5,168.3	5,168.3 4,506.3	4,210.9	3,902.4	-662.0	-295.5	-308.5	-1,265.9

 $\mathsf{Table}\ \mathsf{A2.11}$. Change in glaciers of different aspect in Nepal

		Glacier number	number		O	Slacier num	Glacier number change			Glacier area (km²)	rea (km ²)		Ö	Glacier area change (km²)	change (km	12)
Aspect	1980	1990	2000	2010	80-90	00-06	00-10	80-10	1980	1990	2000	2010	80-90	00-06	00-10	80-10
North	5	11	17	14	9	9	ç-	6	0.8	1.9	2.6	1.7	1.2	0.7	6:0-	6.0
Northeast	171	216	249	255	45	33	9	84	97.1	89.4	93.5	89.1	7.7-	4.2	4.4	æ
East	517	543	277	290	26	34	13	73	536.5	435.4	475.8	466.6	-101.1	40.4	-9.2	6.69-
Southeast	889	685	631	634	ကု	-54	က	-54	1,141.6	944	796.2	754.6	-197.6	-147.8	-41.6	-387
South	708	716	720	717	8	4	5-	6	1,563.9	1,322.8	1,214.4	1,078.7	-241.1	-108.4	-135.7	-485.2
Southwest	683	754	290	773	71	36	-17	06	1,189.7	1,168	1,090.5	991.3	-21.7	9.77-	-99.1	-198.4
West	493	524	545	561	31	21	16	89	545.7	448.2	432.7	412.6	-97.5	-15.4	-20.1	-133.1
Northwest	165	207	236	264	42	29	28	66	66	2.96	105.2	107.8	3.7	8.5	2.6	14.8
Total	3,430	3,656	3,765	3,808	226	109	43	378	5,168.3	4,506.3	4,210.9	3,902.4	-662.0	-295.5	-308.5	-1,265.9

Table A2.12: Change in glaciers of different slope in Nepal

Glac	Glacier number			Glacier num	number change	4)		Glacier area (km²)	теа (km²)		D	acier area	Glacier area change (km²)	2)
1990	2000	2010	80-90	00-06	00-10	80-10	1980	1990	2000	2010	80-90	90-00	00-10	80-10
	5 3	7	က	-5	4	5	15.2	15.6	15.4	18.6	0.4	-0.2	3.2	3.5
486	36 550	625	104	64	75	243	658.8	874.7	1012.8	1031.2	215.9	138.1	18.4	372.4
1,508	1,521	1,455	44	13	99-	6-	3,146.7	2,691.3	2,321.8	2,056.2	-455.3	-369.5	-265.7	-1090.5
1,147	171,1 7	1,162	5	24	٥	20	1,099.2	725.1	667.2	618.4	-374.1	-57.9	-48.8	-480.7
437	37 443	464	48	9	21	75	224.4	175.8	168.4	152.1	-48.6	-7.4	-16.3	-72.3
	72 75	89	21	က	14	38	24.1	23.6	25.0	24.9	-0.5	1.4	-0.2	0.8
	1 2	9	-	-	4	9	0	0.2	0.3	-	0.2	0	0.7	-
3,656	3,765	3,808	-226	-109	-43	-378	5,168	4,506	4,211	3,902	-662.0	-295.5	-308.5	-1265.9

Table A2.13: Change in glaciers of different morphological type in Nepal

J	Glacier type		Glacier	Glacier number		U	Glacier number change	ber chang	Φ		Glacier area (km²)	rea (km^2)		ਹੁੰ 	Glacier area change (km²)	change (kr	n ²)
		1980	1990	2000	2010	06-08	00-06	00-10	80-10	1980	1990	2000	2010	06-08	00-06	00-10	80-10
	Miscellaneous	17	18	19	18	-	-	-	-	10.0	9.3	9.1	8.2	9.0-	-0.3	6.0-	-1.8
uir	lce Apron	806	902	934	943	96	32	6	137	320.8	274.9	260.9	245.5	-45.9	-14	-15.4	-75.3
otnuc	Cirque	31	31	26	24	0	-5	-2	7-	13.3	9.6	6.4	4.9	-3.7	-3.2	-1.5	-8.4
PW	Niche	307	322	328	315	15	9	-13	ω	110.2	6.99	49.6	39.6	-43.3	-17.3	-10	-70.6
	Basin	2159	2272	2346	2396	113	74	50	237	2872.7	2535.1	2349.4	2163.4	-337.6	-185.7	-186.0	-709.3
Valley	Trough	110	111	112	112	-	-	0	2	1841.3	1610.4	1535.5	1440.8	-230.8	-74.9	-94.7	-400.5
	Total	3430	3656	3765	3808	226	109	43	378	5168.3	4506.3	4210.9	3902.4	-662	-295.5	-308.5	-1265.9

Table A2.14: Change in glacier number and area in the Mahakali basin

	Glacier number	umber		O	Glacier number change	ber change	Ф		Glacier area (km²)	rea (km²)		<u>D</u>	Glacier area change (km²)	change (kn	ا2ر)
1990		2000	2010	06-08	00-06	00-10	80-10	1980	1990	2000	2010	80-90	00-06	00-10	80-10
,,	34	44	09	18	10	16	44	1.1	2.3	2.6	3.6	1.2	0.3	1.0	2.5
	59	29	64	0	8	ç-	5	15.4	15.2	14.8	14.1	-0.3	-0.4	9.0-	-1.3
	19	15	17	-1	4	2	ç-	14.1	14	10.9	11.6	0	-3.1	7.0	-2.5
	20	18	18	-5	-2	0	7-	46.5	41.8	39.1	46.2	-4.7	-2.7	7.1	-0.3
	9	9	4	-1	0	-2	6-	43.9	39.5	41.4	25.9	-4.5	1.9	-15.5	-18
	2	1	1	-1	١-	0	-2	37.5	21.9	11.6	11.1	-15.6	-10.3	-0.4	-26.4
	140	151	164	01	Ξ	13	34	158.5	134.6	120.3	112.5	-23.9	-14.3	-7.8	-45.9

Table A2.15: Change in glaciers of different aspect in the Mahakali basin

Aspect		Glacier number	number		J	Glacier num	number change			Glacier area (km²)	ea (km²)		Ō	acier area o	Glacier area change (km²)	2)
	1980	1990	2000	2010	80-90	00-06	00-10	80-10	1980	1990	2000	2010	80-90	00-06	00-10	80-10
North	2	2	_	-	0	Ŀ	0	Ţ	0.3	0.3	0.2	0.2	0	-0.1	0	-0.1
Northeast	5	6	10	6	4	1	١-	4	2.1	2	2.2	1.9	-0.1	0.1	-0.3	-0.3
East	17	17	18	15	0	1	5-	-2	10.9	6.3	7.9	6.3	-1.6	-1.4	-1.6	-4.7
Southeast	16	17	19	23	1	2	4	7	15.3	9.6	7.1	9.6	-5.6	-2.5	2.5	-5.7
South	28	24	24	24	4	0	0	4-	42.2	37.7	34.1	29.9	-4.5	-3.5	-4.2	-12.3
Southwest	28	34	38	40	9	4	2	12	29.7	35.9	23.2	20.8	6.1	-12.6	-2.5	6-
West	30	30	31	37	0	1	9	7	54.5	37.1	41.2	35.3	-17.4	4.1	-5.9	-19.3
Northwest	4	7	10	15	3	3	5	11	3.5	2.7	4.3	8.7	-0.8	1.6	4.4	5.2
Total	130	140	151	164	01	=	13	34	158.5	134.6	120.3	112.5	-23.9	-14.3	-7.8	-45.9

Table A2.16: Change in glaciers of different slope in the Mahakali basin

Mean slope		Glacier number	number		O	Glacier number change	ber change	•		Glacier area (km²)	ea (km²)		ĕ	Glacier area change (km²)	change (km	2)
(degree)	1980	1990	2000	2010	80-90	00-06	00-10	80-10	1980	1990	2000	2010	80-90	00-06	00-10	80-10
0-10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10–20	က	4	4	10	-	0	9	7	1.6	1.4	1.2	8.1	-0.2	-0.2	6.9	6.5
20–30	37	43	46	44	9	က	-2	7	90.2	82.3	75.2	70.1	7.9	-7.1	-5.1	-20.1
30-40	52	99	62	56	4	9	9	4	52.9	42.4	36.9	25.2	-10.5	-5.5	-11.7	-27.7
40–50	33	31	30	43	-2	-	13	10	13.1	7.7	5.9	7.8	-5.3	-1.9	1.9	-5.2
50-60	5	9	6	11	1	3	2	9	0.7	0.7	1.1	1.4	0	0.4	0.3	9.0
>60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	130	140	151	164	10	Ξ	13	34	158.5	134.6	120.3	112.5	-23.9	-14.3	-7.8	-45.9

Table A2.17: Change in glaciers of different morphological type in the Mahakali basin

ট	Glacier type		Glacier number	number		Ŋ	Glacier number change	ber chang	Je		Glacier area (km²)	rea (km²)		Glc	acier area	Glacier area change (km²)	(²١
		1980	1990	2000	2010	06-08	00-06	00-10	80-10	1980	1990	2000	2010	80-90	00-06	00-10	80-10
	Miscellaneous	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
uit	Ice Apron	44	47	53	58	က	9	5	14	17	10.5	9.4	6.7	-6.5	١-	0.2	-7.3
otnuc	Cirque	က	က	2	2	0	١-	0	ŀ	2.2	1.8	1.5	1.4	-0.4	-0.2	-0.2	6.0-
PW	Niche	7	9	5	5	-	-	0	-2	4.1	0.8	4.0	0.4	9.0-	-0.4	0	-
	Basin	99	73	80	88	8	7	8	23	59.3	54.3	45.6	45.4	-5	-8.6	-0.3	-13.9
Valley	Trough	11	11	11	11	0	0	0	0	78.6	67.3	63.3	55.8	-11.3	4	-7.5	-22.9
	Total	130	140	151	164	10	Ξ	13	34	158.5	134.6	120.3	112.5	-23.9	-14.3	-7.8	-45.9

Table A2.18: Change in glacier area classes in the Karnali basin

Class Area (km²) Glaicer number	Glaicer number	Glaicer number	number			Gla	lacier num	ıcier number change	Φ	•	Glacier area (km²)	rea (km²)		OID OIC	Glacier area change (km²)	change (kn	(۲ر
		1980	1990	2000	2010	80-90	00-06	00-10	80-10	1980	1990	2000	2010	80-90	00-06	00-10	80-10
Ja	≥ 0.10	91	168	261	341	77	66	80	250	6.5	11.6	17.8	22	5.2	6.1	4.2	15.5
11	0.11-0.50	644	989	672	652	41	-13	-20	8	171.5	172.5	162.7	158.7	1	8.6-	4	-12.8
2	0.51-1.00	294	592	243	234	-25	-26	6-	09-	207.1	192	169.2	166.1	-15.1	-22.8	-3.1	4
က	1.01–5.00	300	256	234	203	-44	-22	-31	76-	594.3	495.2	444.3	400.4	1.99.1	-50.9	-43.9	-193.9
4	5.01-10.00	30	27	23	19	ကု	4	4	-1	210.6	182.4	152	125.8	-28.2	-30.4	-26.1	-84.8
5	> 10.01	12	11	11	10	1-	0	-1	-2	195.4	176.3	167.1	149.9	-19.1	-9.2	-17.2	-45.5
	Total	1,371	1,416	1,444	1,459	45	28	15	88	1,385.4	1,230.1	1,113.1	1,022.8	-155.3	-117.0	-90.3	-362.6

Table A2.19: Change in glaciers of different aspect in the Karnali basin

Aspect		Glacier number	number		<u> </u>	Glacier number change	ıber change	0		Glacier area (km²)	rea (km²)		Ō	Glacier area change (km²)	change (kr	12)
	1980	1990	2000	2010	80-90	00-06	00-10	80-10	1980	1990	2000	2010	80-90	00-06	00-10	80-10
North	2	5	7	∞	က	2	_	9	0.2	9.0	0.7	9.0	0.5	0.1	-0.1	0.5
Northeast	76	96	111	114	20	15	ო	38	34.2	32.6	32.6	31.9	-1.6	0	-0.7	-2.3
East	217	223	239	243	9	16	4	26	174.4	153.4	150.6	139.1	-21	-2.9	-11.4	-35.3
Southeast	261	256	226	236	5	-30	10	-25	277.9	227	185	189	-50.9	-42	4	-88.9
South	241	240	239	223	Ŀ	-	-16	-18	348.1	305.7	253.2	213.7	-42.4	-52.5	-39.5	-134.4
Southwest	262	274	275	272	12	_	ო	10	325.2	311.4	300.9	269.3	-13.8	-10.5	-31.6	-55.9
West	230	222	241	244	φ	19	ო	14	188.5	157.7	148.1	140.2	-30.9	9.6-	-7.8	-48.3
Northwest	82	100	106	119	18	9	13	37	36.9	41.7	42.1	39	4.8	0.4	-3.1	2
Total	1,371	1,416	1,444	1,459	45	28	15	88	1,385.4	1,230.1	1,113.1	1,022.8	-155.3	-117.0	-90.3	-362.6

Table A2.20: Change in glaciers of different slope in the Karnali basin

Mean slope		Glacier number	number		J	Glacier number change	ber change	•		Glacier area (km²)	ea (km²)		Ō	acier area	Glacier area change (km²)	2)
(degree)	1980	1990	2000	2010	80-90	00-06	00-10	80-10	1980	1990	2000	2010	80-90	00-06	00-10	80-10
0-10	0	-	0	4	-	-	4	4	0	0.2	0	3.4	0.2	-0.2	3.4	3.4
10-20	195	236	263	279	41	27	16	84	299.8	330	328.8	314.9	30.2	-1.2	-13.9	15.1
20-30	629	616	611	586	-13	-5	-25	-43	790.1	650.1	562.3	485.4	-140.0	-87.8	-76.9	-304.7
30-40	433	425	435	445	φ	10	10	12	251.9	205.8	182.5	180.6	-46.1	-23.3	-1.9	-71.3
40-50	108	131	129	136	23	-2	7	28	42.2	43.2	38.3	36.9	-	4.9	4.1-	-5.3
50-60	9	7	9	٥	-	-	က	က	4.[6.0	1.2	1.7	-0.5	0.2	9.0	0.3
>60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	1,371	1,416	1,444	1,459	45	28	15	88	1,385	1,230	1,113	1,023	-155.3	-117.0	-90.3	-362.6

Table A2.21: Change in glaciers of different morphological type in the Karnali basin

0	Glacier type		Glacier number	number		Ö	Glacier number change	ıber chang	<u>o</u>		Glacier area (km²)	rea (km²)		<u>ชี</u>	Glacier area change (km²)	change (kn	(۲
		1980	1990	2000	2010	80-90	00-06	00-10	80-10	1980	1990	2000	2010	80-90	00-06	00-10	80-10
	Miscellaneous	2	2	2	2	0	0	0	0	-	0.7	9.0	9.0	-0.2	-0.1	-0.1	4.0-
uir	Ice Apron	225	226	228	225	-	2	ကု	0	57.9	45.8	40.5	37.5	-12	-5.3	-3.1	-20.4
otnuc	Cirque	5	5	က	4	0	-2	_	Ţ	1.4	1.1	0.2	0.3	-0.4	6.0-	0.1	-1.2
W	Niche	141	145	148	149	4	က	_	8	39.1	27.7	18.6	14.6	-11.4	-9.1	4	-24.5
	Basin	626	1019	1044	1060	40	25	16	81	1083.5	963.2	873.8	798.9	-120.3	-89.4	-74.9	-284.6
Valley	Trough	19	19	19	19	0	0	0	0	202.5	191.6	179.3	171.1	-11	-12.2	8.3	-31.5
	Total	1,371	1,416	1,444	1,459	45	28	15	88	1,385.4	1,230.1	1,113.1	1,022.8	-155.3	-117.0	-90.3	-362.6

Table A2.22: Change in glacier number and area in the Gandaki basin

Class	Area (km²)		Glacier number	number		Ō	lacier num	lacier number change	Ф		Glacier area (km²)	rea (km²)		JS GF	Glacier area change (km²)	change (kn	(²ر
		1980	1990	2000	2010	80-90	00-06	00-10	80-10	1980	1990	2000	2010	80-90	00-06	00-10	80-10
	≤ 0.10	42	141	173	199	66	32	26	157	3.1	6.7	11.6	13.6	9.9	1.8	2	10.4
	0.11-0.50	495	292	618	629	72	51	11	134	142.1	145.7	156.6	159.5	3.6	11	2.9	17.4
	0.51-1.00	246	226	217	195	-20	6-	-22	-51	175.1	1.721	153.3	139	-17.9	3.8	-14.3	-36.1
	1.01–5.00	338	295	267	258	-43	-28	6-	-80	691.4	598.5	535	522.5	-92.9	-63.6	-12.5	-168.9
	5.01-10.00	36	32	34	27	4	2	7-	6-	262.9	234.4	240.1	190.9	-28.6	5.7	-49.2	-72
	> 10.01	36	33	32	32	ကု	··	0	4	850.9	702	668.4	639	-148.9	-33.6	-29.4	-211.9
	Total	1,193	1,294	1,341	1,340	101	47	-	147	2,125.5	1,847.4	1,764.9	1,664.4	-278.1	-82.5	-100.5	-461.0

Table A2.23: Change in glaciers of different aspect in the Gandaki basin

Aspect		Glacier number	number		•	Glacier number change	ber change			Glacier area (km²)	rea (km ²)		Ō	Glacier area change (km²)	change (km	2)
	1980	1990	2000	2010	80-90	00-06	00-10	80-10	1980	1990	2000	2010	80-90	00-06	00-10	80-10
North	0	2	9	2	2	4	4-	2	0	0.3	6.0	0.5	0.3	9.0	-0.4	0.5
Northeast	64	74	87	86	10	13	2	25	42.2	32.2	40.5	37	-10	8.4	-3.6	-5.2
East	173	190	190	193	17	0	က	20	254.2	198.9	241.7	253.6	-55.4	42.8	11.9	-0.7
Southeast	252	248	232	225	4-	-16	7-	-27	635.7	533.6	450.6	415.4	-102.1	-83	-35.3	-220.4
South	271	280	289	293	6	6	4	22	543.1	435.7	413.6	367	-107.5	-22.1	-46.6	-176.1
Southwest	229	260	275	275	31	15	0	46	406.5	436.3	407.6	374.9	29.7	-28.7	-32.7	-31.6
West	138	160	170	170	22	10	0	32	199.1	165	159.7	168	-34.1	-5.3	8.4	-31.1
Northwest	99	80	92	66	14	12	_	27	44.6	45.5	50.4	48.2	_	4.8	-2.2	3.6
Total	1,193	1,294	1,341	1,340	101	47	7	147	2,125.5	1,847.4	1,764.9	1,664.4	-278.1	-82.5	-100.5	-461.0

Table A2.24: Change in glaciers of different slope in the Gandaki basin

Mean slope		Glacier number	number		O	Glacier num	number change			Glacier area (km²)	ea (km ²)		Ö	acier area	Glacier area change (km²)	2)
(degree)	1980	1990	2000	2010	80-90	00-06	00-10	80-10	1980	1990	2000	2010	80-90	00-06	00-10	80-10
0-10	2	4	က	က	2	Γ-	0	-	15.2	15.4	15.4	15.2	0.3	0	-0.2	0.1
10–20	110	142	160	166	32	18	9	56	245.8	284.3	276.9	287.7	38.5	-7.5	10.8	41.9
20–30	481	516	514	505	35	-2	٥ <u>٠</u>	24	1156.7	1092.7	1026.9	934.7	-64	-65.9	-92.1	-222
30-40	394	398	414	406	4	16	ς	15	561.1	340	327.4	322	-221.2	-12.6	-5.4	-239.1
40–50	170	182	197	196	12	15	-	26	127.1	6.96	98.8	84.9	-30.8	2.5	-14.0	-42.3
50-60	36	51	51	55	15	0	4	19	19.5	18.4	19.3	18.9	-1.1	6.0	-0.4	9.0-
>60	0	1	2	9	-	-	4	9	0	0.2	0.3	1	0.2	0	0.7	-
Total	1,193	1,294	1,341	1,340	101	47	ŀ	147	2,125	1,847	1,765	1,664	-278.1	-82.5	-100.5	-461.0

Table A2.25: Change in glaciers of different morphological type in the Gandaki basin

	Glacier type		Glacier number	number		O	Glacier number change	ber chang	Φ.		Glacier area (km²)	rea (km²)		Glo	acier area	Glacier area change (km²)	(2)
		1980	1990	2000	2010	80-90	00-06	00-10	80-10	1980	1990	2000	2010	06-08	00-06	00-10	80-10
	Miscellaneous	5	က	4	က	-2	-	-	-2	4.1	2.5	2.5	2.2	-1.6	0.0	-0.3	-1.9
uir	Ice Apron	354	407	420	417	53	13	6-	63	171.0	152.4	147.1	140.9	-18.7	-5.2	-6.2	-30.2
otnuc	Cirque	13	12	11	∞	<u>-</u>	-	ကု	-5	5.5	3.7	2.6	1.8	-1.8	-1.1	-0.8	-3.8
PW	Niche	78	98	06	81	8	4	6-	က	36.1	18.8	16.5	14.3	-17.3	-2.4	-2.2	-21.8
	Basin	711	753	782	797	42	29	15	98	1233.6	1096.4	1041.6	973.7	-137.1	-54.9	-67.9	-259.9
Valley	Valley Trough	32	33	34	34	-	_	0	2	675.1	573.6	554.7	531.7	-101.5	-18.9	-23.0	-143.5
	Total	1,193	1,294	1,341	1,340	101	47	-	147	2,125.5	1,847.4	1,764.9	1664.4	-278.1	-82.5	-100.5	-461.0

Table A2.26: Change in glacier area classes in the Koshi basin

Class	Area (km²)		Glacier number	number		Q	Glacier number change	ber chang	<u>o</u>		Glacier area (km²)	rea (km²)		ਤੂ 	Glacier area change (km²)	change (kı	m ²)
		1980	1990	2000	2010	80-90	00-06	00-10	80-10	1980	1990	2000	2010	80-90	00-06	00-10	80-10
Ja	≤ 0.10	30	96	140	181	99	44	41	151	2.4	6.9	9.3	11.2	4.4	2.4	1.9	8.7
1b	0.11-0.50	325	376	386	394	51	10	8	69	92.3	98.4	100.7	99.1	6.1	2.3	-1.7	6.7
2	0.51-1.00	163	160	133	110	ကု	-27	-23	-53	115.3	112.1	91.6	77.5	-3.2	-20.5	-14	-37.8
8	1.01–5.00	168	134	133	127	-34	Ŀ	φ	-41	354.9	300.8	287.5	265	-54.1	-13.4	-22.5	-89.9
4	5.01-10.00	23	16	17	14	7-	-	ကု	<i>6</i> -	145.5	108	123.8	101.7	-37.5	15.8	-22.1	-43.8
5	> 10.01	27	24	20	19	ņ	4	-	φ	788.5	899	599.7	548.1	-120.4	-68.4	-51.5	-240.3
	Total	736	806	829	845	02	23	91	109	1,498.9	1,498.9 1,294.2 1,212.6 1,102.6	1,212.6	1,102.6	-204.7	-81.6	-110.0	-396.3

Table A2.27: Change in glaciers of different aspect in the Koshi basin

Aspect		Glacier number	number			Glacier num	number change			Glacier area (km²)	rea (km²)		Ō	acier area	Glacier area change (km²)	2)
	1980	1990	2000	2010	80-90	00-06	00-10	80-10	1980	1990	2000	2010	06-08	00-06	00-10	80-10
North	-	2	က	က	-	-	0	2	0.3	0.7	0.8	0.4	0.3	0.2	-0.4	0.1
Northeast	26	37	41	43	11	4	2	17	18.7	22.6	18.2	18.4	3.9	4.4	0.3	-0.2
East	110	113	130	139	င	17	6	29	6.96	73.8	75.6	2.79	-23.1	1.8	φ	-29.3
Southeast	159	164	154	150	5	-10	4-	6-	212.8	173.8	153.5	140.7	-39	-20.3	-12.8	-72.1
South	168	172	168	177	4	4	6	6	630.4	543.7	513.5	468	-86.7	-30.2	-45.5	-162.4
Southwest	164	186	202	186	22	16	-16	22	428.3	384.5	358.8	326.4	-43.8	-25.8	-32.4	-101.9
West	66	112	103	110	17	6-	7	15	103.5	88.4	83.8	69.1	-15.1	4.6	-14.7	-34.4
Northwest	13	20	28	37	7	8	0	24	8.1	8.9	8.4	11.9	-1.3	1.7	3.5	3.9
Total	736	806	829	845	02	23	91	109	1,498.9	1,294.2	1,212.6	1,102.6	-204.7	-81.6	-110.0	-396.3

Table A2.28: Change in glaciers of different slope in the Koshi basin

Mean slope		Glacier number	number		O	Glacier number change	ber change	4		Glacier area (km²)	ea (km²)		ট	acier area	Glacier area change (km²)	2)
(degree)	1980	1990	2000	2010	80-90	00-06	00-10	80-10	1980	1990	2000	2010	80-90	00-06	00-10	80-10
0-10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10–20	74	104	123	170	30	19	47	96	111.6	259	405.9	420.6	147.4	147	14.7	309
20–30	317	333	350	320	16	17	-30	င	1,109.6	866.2	657.5	566	-243.4	-208.7	-91.5	-543.7
30-40	263	268	260	252	5	φ	æ	-11	233.2	136.9	120.4	9.06	-96.3	-16.6	-29.7	-142.6
40–50	78	66	87	89	15	9	2	11	42.1	28.6	25.4	22.6	-13.5	-3.2	-2.8	-19.5
50-60	4	∞	٥	14	4	-	5	10	2.4	3.5	3.4	2.9	1.1	-0.1	9.0-	0.5
>60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	736	908	829	845	70	23	16	109	1,499	1,294	1,213	1,103	-204.7	-81.6	-110.0	-396.3

Table A2.29: Change in glaciers of different morphological type in the Koshi basin

	Glacier type		Glacier number	number		Ō	Glacier number change	ber chang	Ф		Glacier area (km²)	rea (km^2)		Gla	cier area c	Glacier area change (km²)	(2ر
		1980	1990	2000	2010	80-90	00-06	00-10	80-10	1980	1990	2000	2010	06-08	00-06	00-10	80-10
	Miscellaneous	10	13	13	13	3	0	0	3	4.9	6.2	5.9	5.4	1.3	-0.2	-0.5	0.5
uir	Ice Apron	183	222	233	243	39	11	10	09	74.9	66.2	63.8	57.5	-8.7	-2.5	-6.3	-17.5
otnuc	Cirque	10	11	10	10	1	-1	0	0	4.1	င	2	1.5	-1.1	-1.0	9.0-	-2.6
W	Niche	81	85	85	80	4	0	-5	-1	33.6	19.6	14.2	10.4	-14.1	-5.4	-3.7	-23.2
	Basin	404	427	440	451	23	13	11	47	496.4	421.2	388.5	345.5	-75.1	-32.8	-42.9	-150.8
Valley	Trough	48	48	48	48	0	0	0	0	885	778	738.2	682.3	-107	-39.8	-55.9	-202.7
	Total	736	908	829	845	70	23	91	109	1,498.9	1,294.2	1,212.6	1,102.6	-204.7	-81.6	-110.0	-396.3

Annex 3: Elevation, aspect and slope of glaciers in the sub-basins (2010)

Figure A3.1: Elevation, aspect and slope of glaciers in the Mahakali basin (2010)

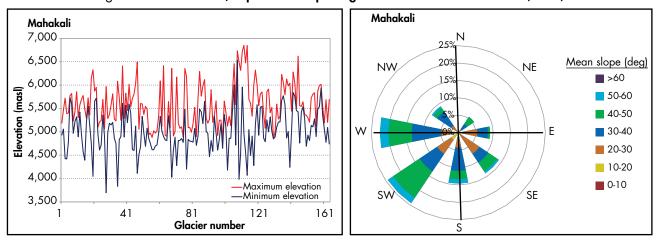
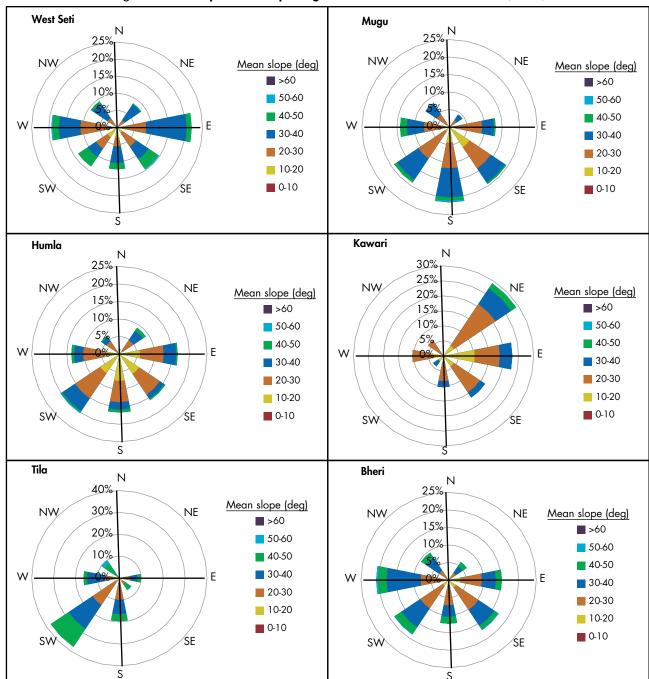



Figure A3.2: Aspect and slope of glaciers in the Karnali sub-basins (2010)

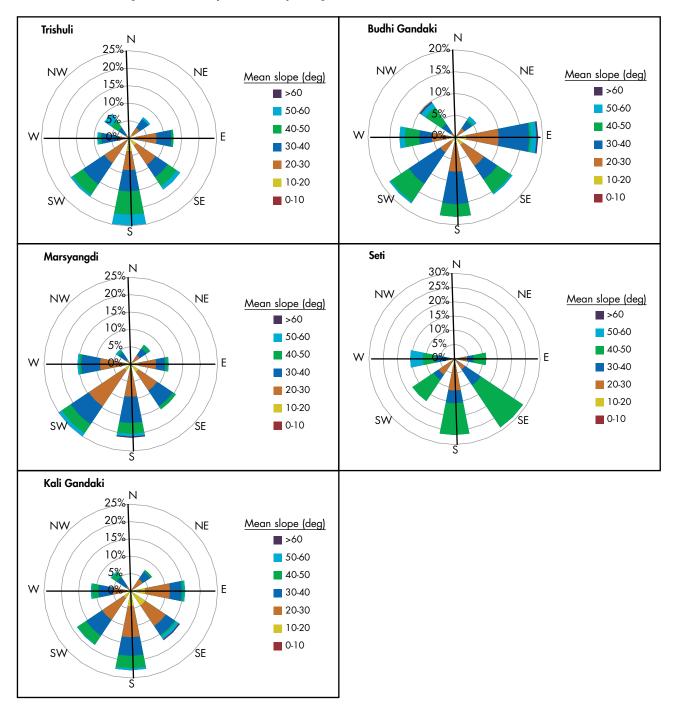
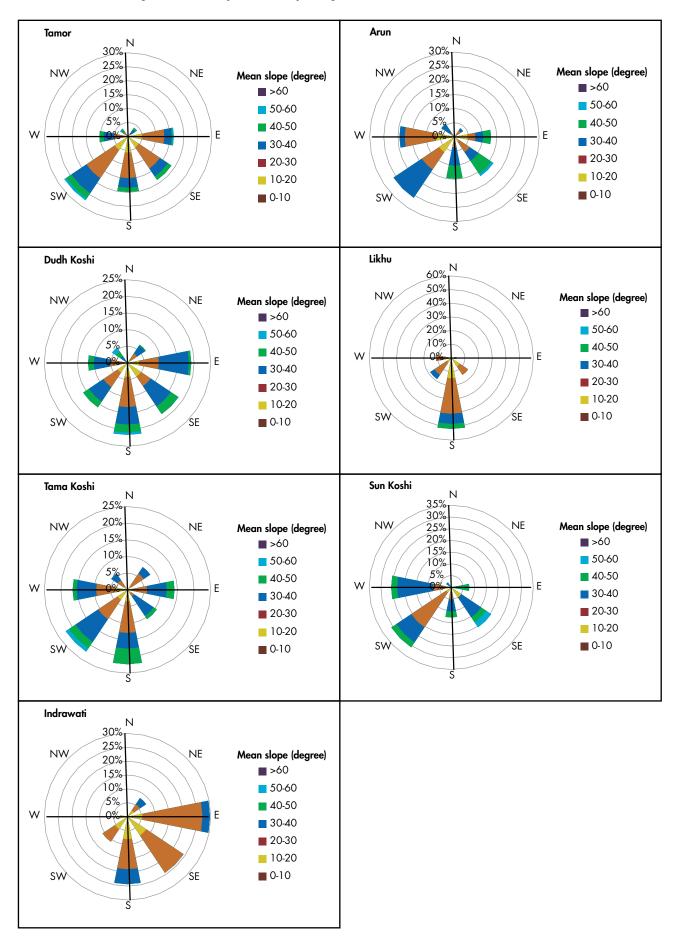



Figure A3.4: Aspect and slope of glaciers in the Koshi sub-basins (2010)

About ICIMOD

The International Centre for Integrated Mountain Development, ICIMOD, is a regional knowledge development and learning centre serving the eight regional member countries of the Hindu Kush Himalayas – Afghanistan, Bangladesh, Bhutan, China, India, Myanmar, Nepal, and Pakistan – and based in Kathmandu, Nepal. Globalization and climate change have an increasing influence on the stability of fragile mountain ecosystems and the livelihoods of mountain people. ICIMOD aims to assist mountain people to understand these changes, adapt to them, and make the most of new opportunities, while addressing upstream-downstream issues. We support regional transboundary programmes through partnership with regional partner institutions, facilitate the exchange of experience, and serve as a regional knowledge hub. We strengthen networking among regional and global centres of excellence. Overall, we are working to develop an economically and environmentally sound mountain ecosystem to improve the living standards of mountain populations and to sustain vital ecosystem services for the billions of people living downstream – now, and for the future.

ICIMOD gratefully acknowledges the support of its core donors: the Governments of Afghanistan, Australia, Austria, Bangladesh, Bhutan, China, India, Myanmar, Nepal, Norway, Pakistan, Switzerland, and the United Kingdom.

International Centre for Integrated Mountain Development GPO Box 3226, Kathmandu, Nepal Tel +977-1-5003222 Fax +977-1-5003299 Email info@icimod.org Web www.icimod.org

ISBN 978 92 9115 311 4